Previous |  Up |  Next

Article

Title: On the existence of conjugate points for linear differential systems (English)
Author: Došlý, Ondřej
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 40
Issue: 1
Year: 1990
Pages: 87-99
.
Category: math
.
MSC: 34A30
idZBL: Zbl 0744.34013
idMR: MR1094975
.
Date available: 2009-09-25T10:22:50Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129471
.
Reference: [1] AHLBRANDT C. D., HINTON D. B., LEWIS R. T.: The effect of variable change on oscillation and disconjugacy criteria with application to spectral theory and asymptotic theory.J. Math. Anal. Appl. 81, 1981, 234-277. MR 0618771
Reference: [2] ATKINSON F. V., KAPER H. G., KWONG M. K.: An oscillation criterion for second order differential systems.Proc. Amer. Math. Soc. 96, 1985, 91-96. MR 0781063
Reference: [3] BELLMAN R.: Vvedenie v teoriu matric.Nauka, Moskva 1976.
Reference: [4] BYRES R., HARRIS B. J., KWONG M. K.: Weighted means and oscillation conditions for second order matriх differential equations.J. Diff. Equations 61, 1986, 164-177. MR 0823400
Reference: [5] BORŮVKA O.: Linear Differentialtransformationen 2.Ordnung. VEB Deutscher Verlag der Wissenschaften, Berlin 1967. MR 0236448
Reference: [6] DOŠLÝ O.: Riccati matrix differential equation and classification of disconjugate differential systems.Arch. Math. 23, 1987, 231-242. MR 0930783
Reference: [7] HARTMAN P. : Ordinary Differential Equations.John Wiley, New York, London, Sydney 1964. Zbl 0125.32102, MR 0171038
Reference: [8] HARTMAN P.: Oscillation criteria for self-adjoint second order differential systems and "principal sectional curvatures".J. Diff. Equations 34, 1979, 326-338. Zbl 0443.34029, MR 0550049
Reference: [9] HINTON D. B., LEWIS R. T.: Oscillation theory for generalized second order differential equations.Rocky Mountain J. Math. 10, 1980, 751-766. Zbl 0485.34021, MR 0595103
Reference: [10] KAPER H. G., KWONG M. K.: Oscillation of two-dimensional linear second-order differential systems.J. Diff. Equations 56, 1985, 195-205. Zbl 0571.34024, MR 0774162
Reference: [11] KAPER H. G., KWONG M. K.: Oscillation theory for linear second-order differential systems.Canadian Math. Soc. Conference Proceedings 8, 1987, 187-187. Zbl 0629.34040, MR 0909909
Reference: [12] MORSE M.: A generalization of the Sturm separation and comparison theorem in n-space.Math. Ann. 103, 1930, 52-69. MR 1512617
Reference: [13] MÜLLER-PFEIFFER E.: Existence of conjugate points for second and fourth order differential equations.Proc. Roy. Soc. Edinburgh 89A, 198 V 281-291. MR 0635764
Reference: [14] MÜLLER-PFEIFFER R.: An oscillation theorem for certain self-adjoint differential equations.Math. Nachr. 108, 1982. 79-92. MR 0695118
Reference: [15] NOUSSIAR E. S., SWANSON C. A.: Oscillation criteria for differential systems.J. Math. Anal. Appl. 36, 1971 575-580. MR 0296417
Reference: [16] REID W. T.: Ordinary Differential Equations.John Wiley, New York 1971. Zbl 0212.10901, MR 0273082
Reference: [17] SCHMINKE V. W.: The lower spectrum of Schrödinger operator.Arch. Rational Mech. Anal. 75, 1981, 147-155. MR 0605526
Reference: [18] SWANSON C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Acad. Press, New York and London 1968. Zbl 0191.09904, MR 0463570
Reference: [19] TIPLER F. J.: General relativity and conjugate differential equations.J. Diff. Equations 30, 1978, 165-174. MR 0513268
.

Files

Files Size Format View
MathSlov_40-1990-1_10.pdf 1.216Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo