Previous |  Up |  Next

Article

Title: Values and minimal spectrum of an algebraic lattice (English)
Author: Georgescu, George
Author: Ploščica, Miroslav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 52
Issue: 3
Year: 2002
Pages: 247-253
.
Category: math
.
MSC: 06B23
MSC: 06D35
MSC: 06F15
idZBL: Zbl 1008.06006
idMR: MR1936331
.
Date available: 2009-09-25T14:08:01Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129742
.
Reference: [1] ANDERSON M.-FEIL T.: Lattice-Ordered Groups.Reidel, Dordrecht, 1988. Zbl 0636.06008, MR 0937703
Reference: [2] BIGARD A.-CONRAD P.-WOLFENSTEIN S.: Compactly generated lattice-ordered groups.Math. Z. 107 (1968), 201-211. MR 0236083
Reference: [3] CONRAD P.-MARTINEZ J.: Very large subgroups of lattice-ordered groups.Comm. Algebra 18 (1990), 2063-2098. MR 1063126
Reference: [4] CONRAD P.-MARTINEZ J.: Complemented lattice-ordered groups.Indag. Math. (N.S.) 1 (1990), 281-298. Zbl 0735.06006, MR 1075880
Reference: [5] DI NOLA A.-GEORGESCU G.-SESSA S.: Closed ideals of MV-algebras.In: Advances in Contemporary Logic and Computer Science (W. A. Carnielli,I. M. L. D'Ottaviano, eds.), Contemp. Math. 235, Amer. Math. Soc, Providence, RI,1999, pp. 99-111. Zbl 0937.06010, MR 1721208
Reference: [6] KEIMEL K.: A unified theory of minimal prime ideals.Acta Math. Acad. Sci. Hungaricae 23 (1972), 51-69. Zbl 0265.06016, MR 0318037
Reference: [7] MARTINEZ J.: Archimedean lattices.Algebra Universalis 3 (1973), 247-260. Zbl 0317.06004, MR 0349503
Reference: [8] SNODGRASS J. T.-TSINAKIS, C : Finite-valued algebraic lattices.Algebra Univeгsalis 30 (1993), 311-319. Zbl 0806.06011, MR 1225870
Reference: [9] SNODGRASS J. T.- TSINAKIS, C : The finite basis theorem for relatively normal lattices.Algebra Universalis 33 (1995), 40-67. MR 1303631
.

Files

Files Size Format View
MathSlov_52-2002-3_1.pdf 512.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo