Title:
|
Some sequence spaces defined by a modulus (English) |
Author:
|
Pehlivan, Serpil |
Author:
|
Fisher, Brian |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
45 |
Issue:
|
3 |
Year:
|
1995 |
Pages:
|
275-280 |
. |
Category:
|
math |
. |
MSC:
|
40A05 |
MSC:
|
40D05 |
idZBL:
|
Zbl 0852.40002 |
idMR:
|
MR1361822 |
. |
Date available:
|
2009-09-25T11:07:46Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/129761 |
. |
Reference:
|
[1] CONNOR J. S.: The statistical and strong p-Cesaro convergence of sequences.Analysis 8 (1988), 47-63. Zbl 0653.40001, MR 0954458 |
Reference:
|
[2] DAS G.-SAHOO S. K.: On some sequence spaces.J. Math. Anal. Appl. 164 (1992), 381-398. Zbl 0778.46011, MR 1151042 |
Reference:
|
[3] FAST H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241-244. Zbl 0044.33605, MR 0048548 |
Reference:
|
[4] FREEDMAN A. R., SEMBER J. J: Densities and summability.Pacific J. Math. 95 (1981), 293-305. Zbl 0504.40002, MR 0632187 |
Reference:
|
[5] LORENTZ G. G.: A contribution to the theory of divergent sequences.Acta Math. 80 (1948), 167-190. Zbl 0031.29501, MR 0027868 |
Reference:
|
[6] MADDOX I. J.: Spaces of strongly summable sequences.Quart. J. Math. Oxford Ser. (2) 18 (1967), 345-355. Zbl 0156.06602, MR 0221143 |
Reference:
|
[7] MADDOX I. J.: A new type of convergence.Math. Proc. Cambridge Philos. Soc. 83 (1978), 61-64. Zbl 0392.40001, MR 0493034 |
Reference:
|
[8] MADDOX I. J.: Sequence spaces defined by a modulus.Math. Proc. Cambridge Philos. Soc. 100 (1986), 161-166. Zbl 0631.46010, MR 0838663 |
Reference:
|
[9] MADDOX I. J.: Inclusion between FK spaces and Kuttner's theorem.Math. Proc. Cambridge Philos. Soc. 101 (1987), 523-527. MR 0878899 |
Reference:
|
[10] NAKANO H.: Concave modulars.J. Math. Soc. Japan 5 (1953), 29-49. Zbl 0050.33402, MR 0058882 |
Reference:
|
[11] PEHLIVAN S.: Sequence space defined by a modulus function.Erc. Univ. J. Science 5 (1989), 875-880. |
Reference:
|
[12] RUCKLE W. H.: FK spaces in which the sequence of coordinate vectors is bounded.Canad. J. Math. 25 (1973), 973-978. Zbl 0267.46008, MR 0338731 |
. |