Previous |  Up |  Next

Article

Title: Oscillation theorems for third order nonlinear differential equations (English)
Author: Škerlík, Anton
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 4
Year: 1992
Pages: 471-484
.
Category: math
.
MSC: 34A34
MSC: 34C10
idZBL: Zbl 0760.34031
idMR: MR1195041
.
Date available: 2009-09-25T10:42:28Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129770
.
Reference: [1] COPPEL W. A.: Disconjugacy.Vol. 220, Springer-Verlag, Berlin-Heidelberg-New York, 1971. Zbl 0224.34003, MR 0460785
Reference: [2] ERBE L.: Oscillation, nonoscillation and asymptotic behavior for third order nonlinear differential equations.Ann. Mat. Pura Appl. 110 (1976), 373-391. Zbl 0345.34023, MR 0427738
Reference: [3] HEIDEL J. W.: Qualitative behavior of solutions of a third order nonlinear differential equation.Pacific J. Math. 27 (1968), 507-526. Zbl 0172.11703, MR 0240389
Reference: [4] LAZER A. C.: The behavior of solutions of the differential equation y'''+p(x)y'+q(x)y=0.Pacific J. Math. 17 (1966), 435-466. Zbl 0143.31501, MR 0193332
Reference: [5] OHRISKA J.: On the oscillation a linear differential equation of second order.Czechoslovak Math. J. 39(114) (1989), 16-23. MR 0983480
Reference: [6] PHILOS, CH. G.: Oscillation and asymptotic behavior of third order linear differential equations.Bull. Inst. Math. Acad. Sinica 11 (1983), 141-160. Zbl 0523.34028, MR 0723022
Reference: [7] PHILOS, CH. G., SFICAS Y. G.: Oscillatory and asymptotic behavior of second and third order retarded differential equations.Czechoslovak Math. J. 32(107) (1982), 169-182. Zbl 0507.34062, MR 0654054
Reference: [8] RAO V. S. H., DAHIYA R. S.: Properties of solutions of a class of third-order linear differential equations.Period. Math. Hungar. 20(3) (1989), 177-184. Zbl 0705.34032, MR 1028955
Reference: [9] SEMAN J.: Oscillation and Asymptotic Properties of Solutions of Differential Equations with Deviating Argument.(Slovak) Dissertation, Department of Mathematics and Physics VŠT, Prešov, 1988.
Reference: [10] SEMAN J.: Oscillation theorems for second order delay inequalities.Math. Slovaca 39 (1989), 313-322. MR 1016348
Reference: [11] SINGH Y. P.: Some oscillation theorems for third order nonlinear differential equations.Yokohama Math. J. 18 (1970), 77-86. MR 0283300
Reference: [12] SWANSON C. A.: Comparison and Oscillation Theory of Linear Differential Equations.Academic Press, New.York-London, 1968. Zbl 0191.09904, MR 0463570
Reference: [13] ŠEDA V.: Nonoscilatory solutions of differential equations with deviating argument.Czechoslovak Math. J. 36(111) (1986), 93-107. MR 0822871
Reference: [14] ŠKERLÍK A.: Oscillatory properties of solutions of a third-order nonlinear differential equation.(Slovak) In: Zborník ved. prác VŠT v Košiciach, 1987, pp. 365-375.
Reference: [15] ŠOLTÉS V.: Oscillatory properties of solutions of a third order nonlinear differential equation.(Russian), Math. Slovaca 26 (1976), 217-227.
Reference: [16] ŠVIDROŇOVA E., ŠOLTÉS P., SEILER J.: Oscillatory properties of solutions of the third-order nonlinear differential equation.(Slovak) In: Zborník ved. prác VŠT v Košiciach, 1982, pp. 33-44.
Reference: [17] WALTMAN P.: Oscillation criteria for third order nonlinear differential equations.Pacific J. Math. 18 (1966), 386-389. Zbl 0144.11403, MR 0200531
Reference: [18] WONG J. S. W.: On the generalized Emden-Fowler equation.SIAM Rev. 17 (1975), 339-360. Zbl 0295.34026, MR 0367368
.

Files

Files Size Format View
MathSlov_42-1992-4_10.pdf 1.412Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo