Previous |  Up |  Next

Article

Title: $K$-theory of oriented Grassmann manifolds (English)
Author: Sankaran, Parameswaran
Author: Zvengrowski, Peter
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 47
Issue: 3
Year: 1997
Pages: 319-338
.
Category: math
.
MSC: 19L64
MSC: 53C15
MSC: 55N15
MSC: 57R25
idZBL: Zbl 1022.55004
idMR: MR1796336
.
Date available: 2009-09-25T11:23:21Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129912
.
Reference: [1] ANTONIANO E.-GITLER S.-UCCI J.-ZVENGROWSKI P.: On the K-theory and parallelizability of projective Stiefel manifolds.Bol. Soc. Mat. Mexicana (2) 31 (1986), 29-46. Zbl 0665.57017, MR 0946976
Reference: [2] ATIYAH M. F.- HIRZEBRUCH F.: Vector bundles and homogeneous.In: Proc. Symp. Pure Math. 3, 1961, pp. 7-38.
Reference: [3] ATIYAH M. F.-MacDONALD I. G.: Introduction to Commutative Algebra.Addison-Wesley, Reading, 1969. Zbl 0175.03601, MR 0242802
Reference: [4] BOREL A.-SERRE J.-P.: Groupes de Lie et puissances reduites de Steenrod.Amer. J. Math. 75 (1953), 409-448. MR 0058213
Reference: [5] BOREL A.-HIRZEBRUCH F.: Characteristic classes and homogeneous spaces I.Amer. J. Math. 80 (1958), 458-538. MR 0102800
Reference: [6] BRÖCKER T.-TOM DIECK T.: Representations of Compact Lie Groups.Grad. Texts in Math. 98, Springer-Verlag, New York, 1985. MR 0781344
Reference: [7] CARTAN H.-EILENBERG S.: Homological Algebra.Princeton University Pгess, Princeton, 1956. Zbl 0075.24305, MR 0077480
Reference: [8] HODGKIN L.: The equivariant Künneth theorem in K-theory.Lecture Notes in Math. 496, Springer-Verlag, New York, 1975. Zbl 0323.55009, MR 0478156
Reference: [9] HOGGAR S. G.: On KO theory of Grassmannians.Quart. J. Math. Oxford Ser. (2) 20 (1969), 447-463. Zbl 0184.48402, MR 0254841
Reference: [10] HUSEMOLLER D.: Fibre Bundles.Grad. Texts in Math. 20, Springer-Verlag, New York, 1975. Zbl 0307.55015, MR 0370578
Reference: [11] KORBAS J.-ZVENGROWSKI P.: The vector field problem: a survey with emphasis on specific manifolds.Exposition. Math. 12 (1994), 3-30. Zbl 0823.57001, MR 1267626
Reference: [12] KULTZE R.: An elementary proof for the non-parallelizabiltiy of oriented Grassmannians.Note Mat. 10, Suppl. 2 (1990), 363-367. MR 1221951
Reference: [13] LAM K. Y.: A formula for the tangent bundle of flag manifolds and related manifolds.Trans. Amer. Math. Soc. 213 (1975), 305-314. Zbl 0312.55020, MR 0431194
Reference: [14] MacLANE S.: Homology.Die Grundlehren der mathematischen Wissenschaften in Einzeldarstellungen, Band 114, Springer Verlag, Berlin, 1967. MR 0349792
Reference: [15] MIATELLO I. D.-MIATELLO R. J.: On stable parallelizability of Gkn and related manifolds.Math. Ann. 259 (1982), 343-350. MR 0661202
Reference: [16] PITTIE H.: Homogeneous vector bundles on homogeneous spaces.Topology II (1972), 199-203. Zbl 0229.57017, MR 0290402
Reference: [17] ROUX A.: Application de la suite spectrale d'Hodgkin au calcul de la K-theorie des varietes de Stiefel.Bull. Soc. Math. France 99 (1971), 345-368. Zbl 0228.55006, MR 0312500
Reference: [18] SANKARAN P.: Nonexistence of almost complex structures on Grassmann manifolds.Proc. Amer. Math. Soc. 113 (1991), 297-302. Zbl 0725.57011, MR 1043420
Reference: [19] SANKARAN P.-ZVENGROWSKI P.: Stable parallelizability of partially oriented flag manifolds.Pacific J. Math. 128 (1987), 349-359. Zbl 0592.57018, MR 0888523
Reference: [20] SPANIER E. H.: Algebraic Topology.McGraw-Hill Book Company, New York-San Francisco-St. Louis-Toronto-London-Sydney, 1966. Zbl 0145.43303, MR 0210112
Reference: [21] STEENROD N.: Topology of Fibre Bundles.Princeton Univ. Press, Princeton, 1951. Zbl 0054.07103, MR 0039258
Reference: [22] TANG, ZI-ZHOU: Non-existence of weak almost complex structures on Grassmannians.Max Planck Inst. Preprint 92-87.
.

Files

Files Size Format View
MathSlov_47-1997-3_10.pdf 1.289Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo