Previous |  Up |  Next

Article

Title: Stable and non-stable non-chaotic maps of the interval (English)
Author: Gedeon, Tomáš
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 41
Issue: 4
Year: 1991
Pages: 379-391
.
Category: math
.
MSC: 37C75
MSC: 37D45
MSC: 37E99
idZBL: Zbl 0762.58014
idMR: MR1149045
.
Date available: 2009-09-25T10:33:46Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/129980
.
Reference: [1] DEN JOY A.: Sur les courbes definies les equations différentielles a la surface du tore.J. Math. Pures Appl., IX. Ser. 11 (1932), 333-375.
Reference: [2] GEDEON T.: There are no chaotic mappings with residual scrambled sets.Bull. Austr. Math. Soc. 36 (1987), 411-416. Zbl 0646.26008, MR 0923822
Reference: [3] HARRISON J.: Wandering intervals.In: Dynamical Systems and Turbulence. (Warwick 1980), Lecture Notes in Math, vol 898, Springer Berlin, Heidelberg and N. Y., 1981, pp. 154-163. MR 0654888
Reference: [4] JANKOVÁ K., SMÍTAL J.: A characterization of chaos.Bull. Austr. Math. Soc. 34 (1986), 283-293. Zbl 0577.54041, MR 0854575
Reference: [5] JANKOVÁ K., SMÍTAL J.: A Theorem of Sarkovskii characterizing continuous map with zero topological entropy.Math. Slovaca (To appear). MR 1016343
Reference: [6] PREISS D., SMÍTAL J.: A characterization of non-chaotic continuous mappings of the interval stable under small perturbations.Trans. Am. Math. Soc. (To appear). MR 0997677
Reference: [7] SMÍTAL J.: Chaotic functions with zero topological entropy.Trans. Am. Math. Soc. 297 (1986), 269-282. Zbl 0639.54029, MR 0849479
Reference: [8] SMÍTAL J.: A chaotic function with scrambled set of positive Lebesque measure.Proc. Am. Math. Soc. 92 (1984), 50-54. MR 0749888
Reference: [9] ŠARKOVSKII A. N.: The behaviour of a map in a neighbourhood of an attracting set.(Russian), Ukrain. Math. Zh. 18 (1966), 60-83. MR 0212784
Reference: [10] ŠARKOVSKII A. N.: Attracting sets containing no cycles.(Russian), Ukr. Math. Zh. 20 (1968), 136-142. MR 0225314
Reference: [11] ŠARKOVSKII A. N.: On cycles and structure of continuous mappings.(Russian), Ukr. Math. Zh. 17 (1965), 104-111. MR 0186757
Reference: [12] ŠARKOVSKII A. N.: A mapping with zero topological entropy having continuum minimal Cantor sets.(Russian), In: Dynamical Systems and Turbulence. Kiev, 1989, pp. 109-115.
Reference: [13] van STRIEN S. J.: Smooth dynamics on the interval.Preprint (1987).
.

Files

Files Size Format View
MathSlov_41-1991-4_4.pdf 933.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo