Previous |  Up |  Next

Article

Title: On superpseudoprimes (English)
Author: Somer, Lawrence
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 5
Year: 2004
Pages: 443-451
.
Category: math
.
MSC: 11A51
idZBL: Zbl 1108.11012
idMR: MR2114615
.
Date available: 2009-09-25T14:22:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130094
.
Reference: [1] BANG A. S. : Taltheoretiske undersogelser.Tidsskrift Math. 5 (1886), 70 80, 130-137.
Reference: [2] BIRKHOFF G. D.-VANDIVER H. S.: On the integral divisors of $a^n - b^n$.Ann. of Math. (2) 5 (1904), 173-180. MR 1503541
Reference: [3] FEHER J.-KISS P.: Note on super pseudoprime numbers.Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 26 (1983), 157-159. Zbl 0519.10010, MR 0719787
Reference: [4] JANUSZ G.: Algebraic Number Fields.Academic Press, New York, 1973. Zbl 0307.12001, MR 0366864
Reference: [5] JOO I.-PHONG B. M.: On super Lehmer pseudoprimes.Studia Sci. Math. Hungar. 25 (1990), 121-124. Zbl 0615.10016, MR 1102204
Reference: [6] KŘÍŽEK M.-LUCA F.-SOMER L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.CMS Books Math./Ouvrages Math. SMC 9, Springer-Verlag, New York, 2001. Zbl 1010.11002, MR 1866957
Reference: [7] MAKOWSKI A.: On a problem of Rotkiewicz on pseudoprime numbers.Elem. Math. 29 (1974), 13. MR 0335424
Reference: [8] MARCUS D.: Number Fields.Springer-Verlag, Berlin-New York, 1977. Zbl 0383.12001, MR 0457396
Reference: [9] PHONG B. M.: On super pseudoprimes which are products of three primes.Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 30 (1987), 125-129. Zbl 0642.10009, MR 0927816
Reference: [10] PHONG B. M.: On super Lucas and super Lehmer pseudoprimes.Studia Sci. Math. Hungar. 23 (1988), 435-442. Zbl 0597.10004, MR 0982690
Reference: [11] POMERANCE C.-SELFRIDGE J. L.-WAGSTAFF S. S.: The pseudoprimes to $25\times 10^9$.Math. Comp. 35 (1980), 1003-1026. MR 0572872
Reference: [12] ROTKIEWICZ A.: On the prime factors of the numbers $2^{p-1} - 1$.Glasgow Math. J. 9 (1968), 83-86.
Reference: [13] SCHINZEL A.: On primitive prime factors of $a^n - b^n$.Math. Proc. Cambridge Philos. Soc. 58 (1962), 555-562. MR 0143728
Reference: [14] SZYMICZEK K.: /: On prime numbers p, q, and r such that pq, pr, and qr are pseudoprimes.Colloq. Math. 13 (1965), 259-263. Zbl 0127.01901, MR 0180522
Reference: [15] SZYMICZEK K.: On pseudoprimes which are products of distinct primes.Amer. Math. Monthly 74 (1967), 35-37. Zbl 0146.26803, MR 0205921
Reference: [16] ZSIGMONDY K.: Zur Theorie der Potenzreste.Monatsh. Math. 3 (1892), 265-284. MR 1546236
.

Files

Files Size Format View
MathSlov_54-2004-5_2.pdf 578.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo