Title:
|
On superpseudoprimes (English) |
Author:
|
Somer, Lawrence |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
54 |
Issue:
|
5 |
Year:
|
2004 |
Pages:
|
443-451 |
. |
Category:
|
math |
. |
MSC:
|
11A51 |
idZBL:
|
Zbl 1108.11012 |
idMR:
|
MR2114615 |
. |
Date available:
|
2009-09-25T14:22:47Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/130094 |
. |
Reference:
|
[1] BANG A. S. : Taltheoretiske undersogelser.Tidsskrift Math. 5 (1886), 70 80, 130-137. |
Reference:
|
[2] BIRKHOFF G. D.-VANDIVER H. S.: On the integral divisors of $a^n - b^n$.Ann. of Math. (2) 5 (1904), 173-180. MR 1503541 |
Reference:
|
[3] FEHER J.-KISS P.: Note on super pseudoprime numbers.Ann. Univ. Sci. Budapest. Eotvos Sect. Math. 26 (1983), 157-159. Zbl 0519.10010, MR 0719787 |
Reference:
|
[4] JANUSZ G.: Algebraic Number Fields.Academic Press, New York, 1973. Zbl 0307.12001, MR 0366864 |
Reference:
|
[5] JOO I.-PHONG B. M.: On super Lehmer pseudoprimes.Studia Sci. Math. Hungar. 25 (1990), 121-124. Zbl 0615.10016, MR 1102204 |
Reference:
|
[6] KŘÍŽEK M.-LUCA F.-SOMER L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.CMS Books Math./Ouvrages Math. SMC 9, Springer-Verlag, New York, 2001. Zbl 1010.11002, MR 1866957 |
Reference:
|
[7] MAKOWSKI A.: On a problem of Rotkiewicz on pseudoprime numbers.Elem. Math. 29 (1974), 13. MR 0335424 |
Reference:
|
[8] MARCUS D.: Number Fields.Springer-Verlag, Berlin-New York, 1977. Zbl 0383.12001, MR 0457396 |
Reference:
|
[9] PHONG B. M.: On super pseudoprimes which are products of three primes.Ann. Univ. Sci. Budapest. Eótvós Sect. Math. 30 (1987), 125-129. Zbl 0642.10009, MR 0927816 |
Reference:
|
[10] PHONG B. M.: On super Lucas and super Lehmer pseudoprimes.Studia Sci. Math. Hungar. 23 (1988), 435-442. Zbl 0597.10004, MR 0982690 |
Reference:
|
[11] POMERANCE C.-SELFRIDGE J. L.-WAGSTAFF S. S.: The pseudoprimes to $25\times 10^9$.Math. Comp. 35 (1980), 1003-1026. MR 0572872 |
Reference:
|
[12] ROTKIEWICZ A.: On the prime factors of the numbers $2^{p-1} - 1$.Glasgow Math. J. 9 (1968), 83-86. |
Reference:
|
[13] SCHINZEL A.: On primitive prime factors of $a^n - b^n$.Math. Proc. Cambridge Philos. Soc. 58 (1962), 555-562. MR 0143728 |
Reference:
|
[14] SZYMICZEK K.: /: On prime numbers p, q, and r such that pq, pr, and qr are pseudoprimes.Colloq. Math. 13 (1965), 259-263. Zbl 0127.01901, MR 0180522 |
Reference:
|
[15] SZYMICZEK K.: On pseudoprimes which are products of distinct primes.Amer. Math. Monthly 74 (1967), 35-37. Zbl 0146.26803, MR 0205921 |
Reference:
|
[16] ZSIGMONDY K.: Zur Theorie der Potenzreste.Monatsh. Math. 3 (1892), 265-284. MR 1546236 |
. |