Previous |  Up |  Next

Article

Title: An upper bound for the G.C.D. of two linear recurring sequences (English)
Author: Fuchs, Clemens
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 1
Year: 2003
Pages: 21-42
.
Category: math
.
MSC: 11D45
MSC: 11D61
MSC: 11D75
idZBL: Zbl 1048.11025
idMR: MR1964201
.
Date available: 2009-09-25T14:12:06Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130345
.
Reference: [1] BUGEAUD Y.-CORVAJA P.-ZANNIER U.: An upper bound for the G.C.D. of $a^n - 1$ and $b^n - 1$.Math. Z. (To appear). MR 1953049
Reference: [2] CORVAJA P.-ZANNIER U.: Diophantine equations with power sums and universal Hilbert sets.Indag. Math. (N.S.) 9 (1998), 317-332. Zbl 0923.11103, MR 1692189
Reference: [3] CORVAJA P.-ZANNIER U.: Finiteness of integral values for the ratio of two linear recurrences.Invent. Math. 149 (2002), 431-451. Zbl 1026.11021, MR 1918678
Reference: [4] EVERTSE J.-H.: An improvement of the Quantitative Subspace Theorem.Compositio Math. 101 (1996), 225-311. Zbl 0856.11030, MR 1394517
Reference: [5] VAN DER POORTEN A. J.: Some facts that should be better known, especially about rational functions.In: Number Theory and Applications. Proc. NATO ASI, Banff/Can. 1988. NATO ASI Ser., Ser. C 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 497-528. MR 1123092
Reference: [6] VAN DER POORTEN A. J.: Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles.C. R. Acad. Sci. Paris Ser. I Math. 306 (1998), 97-102. MR 0929097
Reference: [7] SCHMIDT W. M.: Diophantine Approximation.Lecture Notes in Math. 785, Springer Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0421.10019, MR 0568710
Reference: [8] SCHMIDT W. M.: Diophantine Approximations and Diophantine Equations.Lecture Notes in Math. 1467, Springer Verlag, Berlin, 1991. Zbl 0754.11020, MR 1176315
Reference: [9] SCHMIDT W. M.: The zero multiplicity of linear recurrence sequences.Acta Math. 182 (1999), 243-282. Zbl 0974.11013, MR 1710183
.

Files

Files Size Format View
MathSlov_53-2003-1_2.pdf 1.789Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo