Title:
|
An upper bound for the G.C.D. of two linear recurring sequences (English) |
Author:
|
Fuchs, Clemens |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
53 |
Issue:
|
1 |
Year:
|
2003 |
Pages:
|
21-42 |
. |
Category:
|
math |
. |
MSC:
|
11D45 |
MSC:
|
11D61 |
MSC:
|
11D75 |
idZBL:
|
Zbl 1048.11025 |
idMR:
|
MR1964201 |
. |
Date available:
|
2009-09-25T14:12:06Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/130345 |
. |
Reference:
|
[1] BUGEAUD Y.-CORVAJA P.-ZANNIER U.: An upper bound for the G.C.D. of $a^n - 1$ and $b^n - 1$.Math. Z. (To appear). MR 1953049 |
Reference:
|
[2] CORVAJA P.-ZANNIER U.: Diophantine equations with power sums and universal Hilbert sets.Indag. Math. (N.S.) 9 (1998), 317-332. Zbl 0923.11103, MR 1692189 |
Reference:
|
[3] CORVAJA P.-ZANNIER U.: Finiteness of integral values for the ratio of two linear recurrences.Invent. Math. 149 (2002), 431-451. Zbl 1026.11021, MR 1918678 |
Reference:
|
[4] EVERTSE J.-H.: An improvement of the Quantitative Subspace Theorem.Compositio Math. 101 (1996), 225-311. Zbl 0856.11030, MR 1394517 |
Reference:
|
[5] VAN DER POORTEN A. J.: Some facts that should be better known, especially about rational functions.In: Number Theory and Applications. Proc. NATO ASI, Banff/Can. 1988. NATO ASI Ser., Ser. C 265, Kluwer Acad. Publ., Dordrecht, 1989, pp. 497-528. MR 1123092 |
Reference:
|
[6] VAN DER POORTEN A. J.: Solution de la conjecture de Pisot sur le quotient de Hadamard de deux fractions rationnelles.C. R. Acad. Sci. Paris Ser. I Math. 306 (1998), 97-102. MR 0929097 |
Reference:
|
[7] SCHMIDT W. M.: Diophantine Approximation.Lecture Notes in Math. 785, Springer Verlag, Berlin-Heidelberg-New York, 1980. Zbl 0421.10019, MR 0568710 |
Reference:
|
[8] SCHMIDT W. M.: Diophantine Approximations and Diophantine Equations.Lecture Notes in Math. 1467, Springer Verlag, Berlin, 1991. Zbl 0754.11020, MR 1176315 |
Reference:
|
[9] SCHMIDT W. M.: The zero multiplicity of linear recurrence sequences.Acta Math. 182 (1999), 243-282. Zbl 0974.11013, MR 1710183 |
. |