Previous |  Up |  Next

Article

Title: The p. p. ring and the Pierce sheaf representation of non-commutative rings (English)
Author: Szeto, George
Author: To, T. O.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 30
Issue: 4
Year: 1980
Pages: 337-343
.
Category: math
.
MSC: 16Gxx
MSC: 16S50
MSC: 16U30
idZBL: Zbl 0447.16025
idMR: MR595293
.
Date available: 2009-09-25T09:09:35Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/130418
.
Reference: [1] ARENS R., KAPLANSKY I.: Topological repгesentation of algebгas.Trans. Amer. Math. Soc., 63, 1949, 457-481. MR 0025453
Reference: [2] BERGMAN G.: Hereditary commutative rings and centres of hereditary rings.Pгoc. Londoh Math. Soc., 23, 1971, 214-236. Zbl 0219.13018, MR 0309918
Reference: [3] BURGESS W., STEPHENSON W.: Pierce sheaves of non-commutative rings.Communications in Algebra, 4, 1976, 51-75. Zbl 0318.16005, MR 0404320
Reference: [4] DAUNS J., HOFMANN K.: The repгesentation of biregular rings by sheaves.Math. Z., 91. 1966, 103-123. MR 0186693
Reference: [5] DeMEYER F.: Separable polynomials over a commutative ring.Roc. Mtn. J. Math. 2, 1972, 299-310. Zbl 0235.13004, MR 0294321
Reference: [6] GROTHENDIECK A., DIEUDONNE J.: Elements de Geometrie Algebriquue.I.H.E.S. Publications Math. Paris 1960.
Reference: [7] HERSTEIN L.: Topics in ring theory.The University of Chicago Pгess, 1969. Zbl 0232.16001, MR 0271135
Reference: [8] KOH K.: On functional representations of a ring without nilpotent elements.Canadian Math. Bull., 14, 1971, 349-352. Zbl 0217.34004, MR 0369440
Reference: [9] LAMBEK J.: On the representation of modules by sheaves of factor modules.Canad. Math. Bull., 14, 1971, 359-368. Zbl 0217.34005, MR 0313324
Reference: [10] MAGID A.: Pierce's representation and separable algebras.Illinois J. Math. 15, 1971, 114-121. Zbl 0204.05904, MR 0272832
Reference: [11] PIERCE R.: Modules over commutative regular rings.Mem. Amer. Math. Soc., 70, 1967. Zbl 0152.02601, MR 0217056
Reference: [12] SZETO G.: On almost hereditaгy rings.J. Algebгa, 34, 1975, 97-104. MR 0422352
Reference: [14] VASCONCELOS W.: Finiteness of projective ideals.J. Algebra, 25, 1973, 269-278. MR 0314828
Reference: [14] VILLAMAYOR O., ZELINSKY D.: Galois theory for rings with infinitely many idempotents.Nagoya J. Math., 55, 1969, 83-98. MR 0244238
.

Files

Files Size Format View
MathSlov_30-1980-4_1.pdf 566.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo