Previous |  Up |  Next

Article

Title: Trapezoid lemma and congruence distributivity (English)
Author: Chajda, Ivan
Author: Czédli, Gábor
Author: Horváth, Eszter K.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 3
Year: 2003
Pages: 247-253
.
Category: math
.
MSC: 08B05
MSC: 08B10
idZBL: Zbl 1058.08007
idMR: MR2025021
.
Date available: 2009-09-25T14:14:42Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130492
.
Reference: [1] CHAJDA L.-CZÉDLI G.- HORVÁTH E. K.: Shifting lemma and shifting lattice identities.Algebra Universalis (To appear). MR 2026828
Reference: [2] CHAJDA I.-GLAZEK K.: A Basic Course on Algebra.Technical University Press, Zielona Góra, Poland, 2000. MR 1783394
Reference: [3] CHAJDA I.-HORVÁTH E. K.: A triangular scheme for congruence distributivity.Acta Sci. Math. (Szeged) 68 (2002), 29-35. Zbl 0997.08001, MR 1916565
Reference: [4] CZÉDLI G.-HORVÁTH E. K.: Congruence distributivity and modularity permit tolerances.Acta Univ. Palack. Olomouc. Fac. Rerum Natur. Math. 41 (2002), 39-42. Zbl 1043.08002, MR 1967338
Reference: [5] CZÉDLI G.-HORVÁTH E. K.: All congruence lattice identities implying modularity have Mal'tsev conditions.Algebra Universalis (To appear). Zbl 1091.08007, MR 2026828
Reference: [6] DAY A.: A characterization of modularity for congruence lattices of algebras.Canad. Math. Bull. 12 (1969), 167-173. Zbl 0181.02302, MR 0248063
Reference: [7] DUDA J.: The Upright Principle for congruence distributive varieties.Abstract of a seminar lecture presented in Brno, March, 2000.
Reference: [8] DUDA J.: The Triangular Principle for congruence distributive varieties.Abstract of a seminar lecture presented in Brno, March, 2000.
Reference: [9] FRASER G. A.-HORN A.: Congruence relations in direct products.Proc Amer. Math. Soc 26 (1970), 390-394. Zbl 0241.08004, MR 0265258
Reference: [10] FREESE R.-McKENZIE R.: Commutator Theory for Congruence Modular Varieties.Cambridge Univ. Press, Cambridge, 1987. Zbl 0636.08001, MR 0909290
Reference: [11] GUMM H. P.: Geometrical methods in congruence modular algebras.Mem. Amer. Math. Soc 45 no. 286 (1983), viii+79. Zbl 0547.08006, MR 0714648
Reference: [12] GUMM H. P.: Congruence modularity is permutability composed with distributivity.Arch. Math. (Basel) 36 (1981), 569-576. Zbl 0465.08005, MR 0629294
Reference: [13] JONSSON B.: Algebras whose congruence lattices are distributive.Math. Scand. 21 (1967), 110-121. Zbl 0167.28401, MR 0237402
.

Files

Files Size Format View
MathSlov_53-2003-3_3.pdf 611.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo