Previous |  Up |  Next

Article

Title: Mild law of large numbers and its consequences (English)
Author: Mohapl, Jaroslav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 3
Year: 1993
Pages: 277-292
.
Category: math
.
MSC: 28D05
MSC: 37A99
MSC: 60F05
MSC: 60J05
idZBL: Zbl 0858.28009
idMR: MR1241364
.
Date available: 2009-09-25T10:48:13Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/130800
.
Reference: [1] CONWAY J. B.: A Course in Functional Analysis.Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1985. Zbl 0558.46001, MR 0768926
Reference: [2] DUDLEY R. M.: Convergence of Baire measures.Studia Math. 27 (1966), 251-268. Zbl 0147.31301, MR 0200710
Reference: [3] FRIEDMAN N. A.: Introduction to Ergodic Theory.Van Nostrand, New York-Cincinnati-Toronto-London-Melbourne, 1970. Zbl 0212.40004, MR 0435350
Reference: [4] KELLEY J. L.: General Topology.D. Van Nostrand, New York, 1955. Zbl 0066.16604, MR 0070144
Reference: [5] KOLMOGOROV A. N., FOMIN S. V.: Introduction to Theory of Functions and Functional Analysis.(Russian), Nauka, Moscow, 1981. MR 0630899
Reference: [6] KORNFEL'D I. P., SINAI J. G., FOMIN S. V.: Ergodic Theory.(Russian), Nauka, Moscow, 1980. MR 0610981
Reference: [7] KOROLJUK V. S., TURBIN A. F.: Mathematical Elements of Phase Amplification in Complex Systems.(Russian), Naukova Dumka, Kiev, 1978. MR 0515139
Reference: [8] KOVALENKO I. N., KUZNECOV N. JU., SHURENKOV V. M.: Random Processes.(Russian), Naukova Dumka, Kiev, 1983. MR 0751235
Reference: [9] LOTZ H. P.: Positive linear operators on Lp and the Doeblin condition.In: Aspects of Positivity in Functional Analysis. Elsevier Science Publishers B.V., North Holand, 1986, pp. 137-156. MR 0859722
Reference: [10] MEYN S. P.: Ergodic theorems for discrete time stochastic systems using a stochastic Lyapunov function.SIAM J. Control Optim. 27 (1989), 1409-1439. Zbl 0681.60067, MR 1022436
Reference: [11] MOHAPL J.: The Radon measures as functionals on Lip schitz functions.Czechoslovak Math. J. 41 (1991), 446-453. MR 1117798
Reference: [12] MOHAPL J.: On weakly convergent nets in spaces of non-negative measures.Czechoslovak Math. J. 40 (1990), 408-421. Zbl 0727.28011, MR 1065020
Reference: [13] NUMMELIN E.: General Irreducible Markov Chains and Non Negative Operators.Cambridge University Press, Cambridge, 1984. Zbl 0551.60066, MR 0776608
Reference: [14] PACHL J. K.: Measures as functionals on uniformly continuous functions.Pacific J. Math. 82 (1979), 515-521. Zbl 0419.28006, MR 0551709
Reference: [15] PARRY W.: Topics in Ergodic Theory.Cambridge University Press, Cambridge, 1980. MR 0614142
Reference: [16] PARTHASARATHY K. R.: Introduction to Probability and Measure.Springer-Verlag, New York-Heidelberg-Berlin, 1978. MR 0651013
Reference: [17] SHURENKOV V. M.: Ergodic Markov Processes.(Russian), Nauka, Moscow, 1989. Zbl 0687.60065, MR 1087782
Reference: [18] VACHANIJA N. N., TARIELADZE V. L., ČOBANJAN S. A.: Probability Distributions in Banach Spaces.(Russian), Nauka, Moscow, 1985. MR 0787803
Reference: [19] VARADARJAN V. S.: Measures on topological spaces.(Russian), Mat. Sb. 55 (1961), 35-100.
Reference: [20] YOSIDA K.: Functional Analysis.Springer-Verlag, Berlin-Göttingen-Heidelberg, 1965. Zbl 0126.11504
Reference: [21] ŽDANOK T. A.: Fixed point theorem for measurable field of operators with an application to random differential equation.In: Fifth Japan-USSR Symposium Proceedengs 1986, Springer-Verlag, New York-Heidelberg-Berlin, 1988. MR 0936033
.

Files

Files Size Format View
MathSlov_43-1993-3_2.pdf 794.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo