Previous |  Up |  Next

Article

Title: Decomposition theorems in measure theory (English)
Author: Capek, Peter
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 31
Issue: 1
Year: 1981
Pages: 53-69
.
Category: math
.
MSC: 28A12
MSC: 28B10
idZBL: Zbl 0452.28002
idMR: MR619507
.
Date available: 2009-09-25T09:11:51Z
Last updated: 2012-07-31
Stable URL: http://hdl.handle.net/10338.dmlcz/131066
.
Reference: [1] NEUBRUNN T.: Зaмeчaниe oб aбcoлютнoй нeпpepывнocти мep.Russian Mat-fyz. Čas 16 1966, 21-30. MR 0206195
Reference: [2] NEUBRUNN T.: On the equivalence of an exhaustion principle and the axiom of choìce.Fund. Math 60, 1967, 209-211. MR 0232905
Reference: [3] BERBERIAN D. K.: Measure and integration.New York 1960.
Reference: [4] BROOKS S. K.: The Lebesgue decomposition theorem for measures.The Amer. Math. Month. 78, N. 6, 1971, 660-662. MR 1536373
Reference: [5] CAPEK P.: Theorèmes de decomposition en theorie de la mesure I, II.Publications du Semin. d'Analyse de Brest, juin 1976. MR 0470169
Reference: [6] CAPEK P.: Théorèmes de décomposition en theorie de la measuгe.R.A.S.P. t 25, 1967, Serie A-537
Reference: [7] ČERVEŇANSKY J., DRAVECKY J.: A note on Hahn decomposition.Acta F.R.N. Univ. Comen.- Mathematica XXV - 1971, 27-29. Zbl 0228.28002
Reference: [8] FICKER V.: Dominated classes and related questions.Acta F.R.N. Univ. Comen.- Mathematica X, 7, 1966, 3-18. Zbl 0143.27301, MR 0202953
Reference: [9] FICKER V.: An abstract formulation of the Lebesgue decomposition theorem.Aust. Math. Soc. 12, 1971, 101-105. Zbl 0203.35901, MR 0274692
Reference: [10] FICKER V.: On the equivalence of a countable disjoint class of sets of positive measure and a weakeг condition than total $\sigma$-finiteness of measures.Bull. Austral. Math. Soc. 1 1979, 237-243. MR 0257310
Reference: [11] FUCHS L.: Partially ordered algebraic system.Pergamon Press 1963. MR 0171864
Reference: [12] HAHN H., ROSENTHAL A.: Set functions.The University of New Mexico Pгess 1948. Zbl 0033.05301, MR 0024504
Reference: [13] HALMOS P. R.: Measure theory.Van Nonstrand-New York 1950. Zbl 0040.16802, MR 0033869
Reference: [14] HERER. W.: Decomposition of measures with values in a topological group.Bull. de ľAcad Polon. des Sciences Séгie Math. Astron. et Phys. 20, 1972, 203-205. MR 0308357
Reference: [15] HOFFMANN-JѲRGENSEN J.: Vector measures.Math. Scand. 28, 1971, 5-32. MR 0306438
Reference: [16] KLUVÁNEK I.: K тeopии вeктopныцx мep.Mat.-fyz. Čas. 11, 3, 1961.
Reference: [17] LIPECKI Z.: A characterization of group-valued measures satisfying the countable chain condition.Coll. Math. 31, 1974, 231-234. Zbl 0271.28009, MR 0364595
Reference: [18] LIPECKI Z.: Decomposition theorems for Boolean rings, with applications to semigroup-valued measures.Commentationes Mathematicae. XX, 1978, 397-403. Zbl 0372.28015, MR 0519374
Reference: [19] MUSIAL K.: Absolute continuity of vector measures.Coll. Math. 27, 1973, 319-321. Zbl 0262.46049, MR 0328020
Reference: [20] MUSIAL K.: Absolute continuity and the range of group valued Vmeasures.Bull. Acad. Polon. Sci. Série Sci., Math., Astг. et Phys. 21, 1973, 105-113. MR 0349948
Reference: [21] TRAYNOR T.: Decomposition of group-valued additive set functions.Ann. Inst. Fourier, Grenoble, 22, 3, 1972, 131-140. Zbl 0228.28004, MR 0333114
Reference: [22] YAM TING WOO J.: An elementary proof of the Lebesgue decomposition theorem.The Ameг. Math. Monthly 78, 7, 1971, p. 783. MR 0288226
Reference: [23] DOBRAKOV I.: On submeasures I.Disseгtationes Mathemat. CXII, 1974. Zbl 0292.28001, MR 0367140
Reference: [24] Mme GODET-THOBIE C.: Multimesures et Multimesuгes de Tгansitions.Thèse. Montpellier. 1975.
.

Files

Files Size Format View
MathSlov_31-1981-1_5.pdf 1.096Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo