Previous |  Up |  Next

Article

Title: Prime and maximal ideals of partially ordered sets (English)
Author: Erné, Marcel
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 56
Issue: 1
Year: 2006
Pages: 1-22
.
Category: math
.
MSC: 03E25
MSC: 06A06
idZBL: Zbl 1164.03011
idMR: MR2217576
.
Date available: 2009-09-25T14:29:31Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131102
.
Reference: [1] ALEXANDROFF P.: Diskrete Räume.Mat. Sb. 2 (1937), 501-518. Zbl 0018.09105, MR 0004764
Reference: [2] BANASCHEWSKI B.-ERNÉ M.: On Krull's separation lemma.Order 10 (1993), 253-260. Zbl 0795.06005, MR 1267191
Reference: [3] BIRKHOFF G.: Lattice Theory.(3rd ed.). Amer. Math. Soc .Colloq. Publ. 25, Amer. Math. Soc., Providence, RI, 1979. Zbl 0505.06001, MR 0598630
Reference: [4] DAVID E.-ERNÉ M.: Ideal completion and Stone representation of ideal-distributive ordered sets.Topology Appl. 44 (1992), 95-113. Zbl 0768.06003, MR 1173247
Reference: [5] DAVEY B. A.-PRIESTLEY H. A.: Introduction to Lattices and Order.Cambridge University Press, Cambridge, 1990. Zbl 0701.06001, MR 1058437
Reference: [6] ERNÉ M.: Distributivgesetze und Dedekindsche Schnitte.Abh. Braunschw. Wiss. Ges. 33 (1982), 117-145. MR 0693169
Reference: [7] ERNÉ M.: Bigeneration in complete lattices and principal separation in partially ordered sets.Order 8 (1991), 197-221. MR 1137911
Reference: [8] ERNÉ M.: Semidistributivity, prime ideals, and the subbase lemma.Rend. Circ. Mat. Palermo (2) 41 (1992), 241-250. Zbl 0779.06001, MR 1196618
Reference: [9] ERNÉ M.: Distributive laws for concept lattices.Algebra Universalis 30 (1993), 538-580. Zbl 0795.06006, MR 1240572
Reference: [10] ERNÉ M.: Prime ideal theorems and systems of finite character.Comment. Math. Univ. Carolin. 38 (1997), 513-536. Zbl 0938.03072, MR 1485072
Reference: [11] ERNÉ M.: Prime ideal theory for general algebras.Appl. Categ. Structures 8 (2000), 115-144. Zbl 0980.08001, MR 1785840
Reference: [12] ERNÉ M.-WILKE G.: Standard completions for quasiordered sets.Semigroup Forum 27 (1983), 351-376. Zbl 0517.06009, MR 0714681
Reference: [13] FRINK O.: Ideals in partially ordered sets.Amer. Math. Monthly 61 (1954), 223-234. Zbl 0055.25901, MR 0061575
Reference: [14] FRINK O.: Pseudo-complements in semi-lattices.Duke Math. J. 29 (1962), 505-514. Zbl 0114.01602, MR 0140449
Reference: [15] GANTER B.-WILLE R.: Formal Concept Analysis - Mathematical Foundation.Springer-Verlag, Berlin-Heidelberg-New York, 1999. MR 1707295
Reference: [16] GIERZ G.-HOFMANN K. H.-KEIMEL K.-LAWSON J. D.-MISLOVE M.-SCOTT D. S.: Continuous Lattices and Domains.Encyclopedia Math. Appl. 93, Cambridge University Press, Cambridge, 2003. Zbl 1088.06001, MR 1975381
Reference: [17] GORBUNOV A. V.-TUMANOV V. L.: On the existence of prime ideals in semidistributive lattices.Algebra Universalis 16 (1983), 250-252. Zbl 0516.06006, MR 0692266
Reference: [18] GRÄTZER G.: General Lattice Theory.Birkhäuser, Basel, 1973.
Reference: [19] HALPERN J.-LÉVY A.: The Boolean prime ideal theorem does not imply the axiom of choice.In: Axiomatic Set Theory. Proc Symp. Pure Math. Amer. Math. Soc University of California, Los Angeles, July 10-August 5, 1967 (D. Scott, ed.), Proc Sympos. Pure Math. 13, Amer. Math. Soc, Providence, RI, 1971, pp. 83-134. MR 0284328
Reference: [20] HERRLICH H.: The axiom of choice holds if and only if maximal closed filters exist.MLQ Math. Log. Q. 49 (2003), 323-324. MR 1979139
Reference: [21] HOWARD P.-RUBIN J. E.: Consequences of the Axiom of Choice.Math. Surveys Monogr. 59, Amer. Math. Soc, Providence, RI, 1998. Zbl 0947.03001, MR 1637107
Reference: [22] JOHNSTONE P. T.: Almost maximal ideals.Fund. Math. 123 (1984), 201-206. Zbl 0552.06004, MR 0761975
Reference: [23] KATRIŇÁK T.: Pseudokomplementare Halbverbande.Mat. Casopis 18 (1968), 121-143. MR 0262123
Reference: [24] KATRIŇÁK T.: The structure of distributive p-algebras. Regularity and congruences.Algebra Universalis 3 (1973), 238-246. MR 0332598
Reference: [25] KATRIŇÁK T.: A new proof of the Glivenko-Frink Theorem.Bull. Soc Roy. Sci. Liege 50 (1981), 171. Zbl 0482.06001, MR 0646688
Reference: [26] LARMEROVÁ J.-RACHŮNEK J.: Translations of distributive and modular ordered sets.Acta Univ. Palack. Olomuc. Fac. Rerum. Natur. Math. 27 (1988), 13-23. Zbl 0693.06003, MR 1039879
Reference: [27] NIEDERLE J.: Boolean and distributive ordered sets: characterization and representation by sets.Order 12 (1995), 189-210. Zbl 0838.06004, MR 1354802
Reference: [28] RHINEGHOST Y. T.: The Boolean prime ideal theorem holds if and only if maximal open filters exist.Cah. Topol. Geom. Differ. Categ. 43 (2002), 313-315. MR 1949661
Reference: [29] RUBIN H.-SCOTT D.: Some topological theorems equivalent to the Boolean prime ideal theorem.Bull. Amer. Math. Soc. 60 (1954), 389.
Reference: [30] SCOTT D.: The theorem on maximal ideals in lattices and the axiom of choice.Bull. Amer. Math. Soc. 60 (1954), 83.
Reference: [31] TARSKI A.: Prime ideal theorems for Boolean algebras and the axiom of choice.Bull. Amer. Math. Soc. 60 (1954), 390-391 (Abstract).
.

Files

Files Size Format View
MathSlov_56-2006-1_2.pdf 880.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo