Previous |  Up |  Next

Article

Title: On estimation in random fields generated by linear stochastic partial differential equations (English)
Author: Mohapl, Jaroslav
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 49
Issue: 1
Year: 1999
Pages: 95-115
.
Category: math
.
MSC: 60G60
MSC: 62M30
MSC: 62M40
idZBL: Zbl 0940.62089
idMR: MR1804478
.
Date available: 2009-09-25T11:35:18Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131241
.
Reference: [1] AL-GWAIZ M. A.: Theory of Distributions.Marcel Dekker, Inc., New York-Basel-Hong Kong, 1992. Zbl 0759.46033, MR 1172993
Reference: [2] CURTAIN R. F.-FALB P. L.: Stochastic differential equations in Hilbert space.J. Differential Equations 10 (1971), 412-130. Zbl 0225.60028, MR 0303603
Reference: [3] FLORENS-ZMIROU D.: On estimating the diffusion coefficient from discrete observations.J. Appl. Probab. 30 (1993), 790-804. Zbl 0796.62070, MR 1242012
Reference: [4] HUEBNER M.-ROZOVSKII B. L.: On asymptotic properties of maximum likelihood estimators for parabolic stochastic PDE's.Probab. Theory Related Fields 103 (1995), 143-163. Zbl 0831.60070, MR 1355054
Reference: [5] ITO K.: Foundations of Stochastic Differential Equations in Infinite Dimensional Spaces.SIAM, Philadelphia, Pennsylvania, 1984. Zbl 0547.60064, MR 0771478
Reference: [6] JONES R. H.-VECCHIA A. V.: Fitting Continuous ARM A models to unequally spaced spatial data.J. Amer. Statist. Assoc. 88 (1993), 947-954.
Reference: [7] LIPTSER R. S.-SHIRYAYEV A. N.: Statistics of Random Processes I. General Theory.(2nd ed., 1st ed. 1977), Springer-Verlag, New York-Berlin-Heidelberg-Tokyo, 1984. Zbl 0364.60004, MR 0474486
Reference: [8] MARTIN R. J.: The use of time-series models and methods in the analysis of agricultural field trials.Comm. Statist. Theory Methods 19 (1990), 55-81. MR 1060398
Reference: [9] MOHAPL J.: A stochastic advection-diffusion model for the rocky flats soil plutonium data.Ann. Inst. Statist. Math. (1999) (To appear). MR 1771482
Reference: [10] MOHAPL J.: Discrete sample estimation for Gaussian random fields generated by stochastic partial differential equations.Comm. Statist. Stochastic Models 14 (1998), 883-903. Zbl 0903.62076, MR 1631463
Reference: [11] MOHAPL J.: On estimation in the planar Ornstein-Uhlenbeck process.Comm. Statist. Stochastic Models 13 (1997), 435-455. Zbl 0891.62059, MR 1457656
Reference: [12] MOHAPL J.: Maximum likelihood estimation in linear infinite dimensional models.Comm. Statist. Stochastic Models 10 (1994), 781-794. Zbl 0815.62057, MR 1298505
Reference: [13] NAMACHCHIVAYA N. S.: Stochastic Structural Dynamics. Proceedings of the Symposium held at the University of Illinois at Urbana Champaign October 30. -November 1, 1988.(N. S. Namachchivaya, H. H. Hilton, Y. K. Wen, eds.), University of Illinois at Urbana Champaign, Urbana, Illinois, 1989.
Reference: [14] PARTHASARATHY K. R.: Introduction to Probability and Measure.MacMillan Co., India, 1977. Zbl 0395.28001, MR 0651012
Reference: [15] PIETERBARG L.-ROZOVSKII B.: Estimating unknown parameters in SPDE's under discrete observations in time.Preprint, 1996.
Reference: [16] WALSH J. B.: An introduction to differential equations.In: Lecture Notes in Math. 1180, Springer Verlag, Berlin-New York-Heidelberg, 1986, pp. 266-437. MR 0876085
Reference: [17] WHITTLE P.: Topographic correlation, power law covariance functions and diffusion.Biometrika49 (1962), 305-314. Zbl 0114.08003, MR 0181076
Reference: [18] YAGLOM A. M.: Some classes of random fields in n-dimensional space related to stationary random processes.Theory Probab. Appl. 3 (1957), 273-320.
Reference: [19] YOSIDA K.: Functional Analysis.(4th ed.), Springer-Verlag, New York-Berlin-Heidelberg, 1974. Zbl 0286.46002, MR 0350358
.

Files

Files Size Format View
MathSlov_49-1999-1_12.pdf 1.053Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo