Previous |  Up |  Next

Article

Title: On $5$- and $6$-decomposable finite groups (English)
Author: Ashrafi, Ali Reza
Author: Zhao, Yaoqing
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 53
Issue: 4
Year: 2003
Pages: 373-383
.
Category: math
.
MSC: 20D05
MSC: 20D10
MSC: 20D60
MSC: 20E34
MSC: 20E45
idZBL: Zbl 1080.20019
idMR: MR2025470
.
Date available: 2009-09-25T14:15:58Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131538
.
Reference: [1] ASHRAFI A. R.-SAHRAEI H.: On finite groups whose every normal subgroup is a union of the same number of conjugacy classes.Vietnam J. Math. 30 (2002), 289-294. Zbl 1018.20026, MR 1933567
Reference: [2] ASHRAFI A. R.-SAHRAEI H.: Subgroups which are a union of a given number of conjugacy classes.In: Groups, St. Andrews 2001, Oxford University, Oxford, 2001. Zbl 1067.20033, MR 2051512
Reference: [3] BERKOVICH, YA. G.-ZHMUD E.: Characters of Finite Groups.Part 2. Transl. Math. Monographs 181, Amer. Math. Soc, Providence, RI, 1999. MR 1650707
Reference: [4] COLLINS M. J.: Representations and Characters of Finite Groups.Cambridge University Press, Cambridge, 1990. Zbl 0703.20001, MR 1050762
Reference: [5] CONWAY J. H.-CURTIS R. T.-NORTON S. P.-PARKER R. A.-WILSON R. A.: Atlas of Finite Groups. Maximal Subgroups and Ordinary Characters for Simple Groups.Clarendon Press, Oxford, 1985. Zbl 0568.20001, MR 0827219
Reference: [6] HERZOG M.: On finite simple groups of order divisible by three primes only.J. Algebra 10 (1968), 383-388. MR 0233881
Reference: [7] GORENSTEIN D.: Finite Simple Groups. An Introduction to Their Classification.Plenum, New York-London, 1982. Zbl 0483.20008, MR 0698782
Reference: [8] HUPPERT B.: Endliche Gruppen.Springer-Verlag, Berlin, 1967. Zbl 0217.07201, MR 0224703
Reference: [9] ISAACS I. M.: Character Theory of Finite Groups.Pure Appl. Math. 69, Academic Press, New York-San Francisco-London, 1976. Zbl 0337.20005, MR 0460423
Reference: [10] RIESE, UDO-SHAHABI M. A.: Subgroups which are the union of four conjugacy classes.Comm. Algebra 29 (2001), 695-701. MR 1841992
Reference: [11] ROBINSON, DEREK J. S.: A Course in the Theory of Groups.(2nd ed.). Grad. Texts in Math. 80, Springer-Verlag, New York, 1996. MR 1357169
Reference: [12] SAHRAEI H.: Subgroups which are a Union of Conjugacy Classes.M.Sc. Thesis, University of Kashan, 2000.
Reference: [13] SCHONERT M., al.: GAP: Groups, Algorithms and Programming.Lehrstuhl fur Mathematik, RWTH, Aachen, 1992.
Reference: [14] SHAHRYARI M.-SHAHABI M. A.: Subgroups which are the union of two conjugacy classes.Bull. Iranian Math. Soc. 25 (1999), 59-71. Zbl 0957.20020, MR 1771804
Reference: [15] SHAHRYARI M.-SHAHABI M. A.: Subgroups which are the union of three conjugate classes.J. Algebra 207 (1998), 326-332. Zbl 0913.20014, MR 1643118
Reference: [16] SHI, WUJIE-WENZE YANG: A new characterization of A5 and the finite groups in which every non-identity element has prime order.J. Southwest Teachers College 9 (1984), 36-40. (Chinese)
Reference: [17] SHI, WUJIE: The quantitative structure of groups and related topics.In: Group Theory in China. Dedicated to Hsio-Fu Tuan on the Occasion of His 82nd Birthday (Zhe-Xian Wan, Sheng-Ming Shi, eds.), Kluwer Academic Publishers. Math. Appl., Dordrecht, 1996, pp. 163-181. MR 1447204
Reference: [18] SHI, WUJIE-YANG C.: A class of special finite groups.Chinese Sci. Bull. 37 (1992), 252-253.
Reference: [19] SHI, WUJIE: A class of special minimal normal subgroups.J. Southwest Teachers College 9 (1984), 9-13.
Reference: [20] WANG JING: A special class of normal subgroups.J. Chengdu Univ. Sci. Tech. 4 (1987), 115-119. Zbl 0671.20022, MR 1028900
.

Files

Files Size Format View
MathSlov_53-2003-4_6.pdf 777.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo