Previous |  Up |  Next

Article

Title: Weak isometries in directed groups (English)
Author: Jasem, Milan
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 44
Issue: 1
Year: 1994
Pages: 39-43
.
Category: math
.
MSC: 06F15
idZBL: Zbl 0797.06016
idMR: MR1290271
.
Date available: 2009-09-25T10:53:21Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131688
.
Reference: [1] HOLLAND, CH.: Intrinsic metrics for lattice ordered groups.Algebra Universalis 19 (1984), 142-150. Zbl 0557.06011, MR 0758313
Reference: [2] JAKUBÍK J.: Isometries of lattice ordered groups.Czechoslovak Math. J. 30 (1980), 142-152. Zbl 0436.06013, MR 0565917
Reference: [3] JAKUBÍK J.: On isometries of non-abelian lattice order ed groups.Math. Slovaca 31 (1981), 171-175. MR 0611629
Reference: [4] JAKUBÍK J.: Weak isometries of lattice ordered groups.Math. Slovaca 38 (1988), 133-138. Zbl 0642.06009, MR 0945366
Reference: [5] JAKUBÍK J.KOLIBIAR M.: Isometries of multilattice groups.Czechoslovak Math. J. 33 (1983), 602-612. Zbl 0538.06018, MR 0721089
Reference: [6] JASEM M.: Isometries in Riesz groups.Czechoslovak Math. J. 36 (1986), 35-43. Zbl 0603.06007, MR 0822864
Reference: [7] JASEM M.: On weak isometries in multilattice groups.Math. Slovaca 40 (1990), 337-340. Zbl 0753.06015, MR 1120964
Reference: [8] JASEM M.: Isometries in non-abelian multilattice groups.Czechoslovak Math. J. (To appear). Zbl 0890.06012, MR 1451037
Reference: [9] JASEM M.: Weak isometries and isometries in partially ordered groups.(Submitted).
Reference: [10] RACHŮNEK J.: Isometries in ordered groups.Czechoslovak Math. J. 34 (1984), 334 341. Zbl 0558.06020, MR 0743498
Reference: [11] SWAMY K. L. N.: Isometries in autometrized lattice order ed groups.Algebra Universalis 8 (1978), 59-64. MR 0463074
.

Files

Files Size Format View
MathSlov_44-1994-1_4.pdf 406.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo