Previous |  Up |  Next

Article

Title: $L^p$-estimates for solutions of $\overline \partial$-equation on strongly $q$-convex domains (English)
Author: Abdelkader, Osama
Author: Khidr, Sh.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 4
Year: 2004
Pages: 337-348
.
Category: math
.
MSC: 32Q15
MSC: 32W05
idZBL: Zbl 1091.32015
idMR: MR2102288
.
Date available: 2009-09-25T14:21:49Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131725
.
Reference: [1] ABDELKADER O.: $L^p$ -estimates for solution of $\delta$-equation in strongly pseudo-convex domains.Tensor (N.S) 58 (1997), 128-136. Zbl 1014.32026, MR 1697822
Reference: [2] ABDELKADER O.: Un théorème ďannulation pour les fibrés endroites semi-positifs sur une variété Kählérienne faibement 1-complète.In: Complex Analysis-Fifth Romanian-Finish Seminar Part 2. Lecture Notes in Math. 1014, Springer-Verlag, New York, 1981, pp. 1-16. MR 0738110
Reference: [3] ABDELKADER O.-KHIDR, SH.: Solutions to $\overline\partial$-equations on strongly pseudo-convex domains with $L^p$ -estimates.Electron. J. Differential Equations 73 (2004), 1-9, http://ejde.math.txstate.edu, http://ejde.math.unt.edu, or ftp ejde.math.txstate.edu (login: ftp). MR 2057660
Reference: [4] ABDELKADER O.-SABER S.: On the vanishing theorem of Grauert-Riemeschneider.In: Proceeding of the International Conference of Mathematics (Trends and Developments) of the Egyptian Mathematical Society, Cairo, Egypt, 28-31 December (2002) (To appear in Egyptian Mathematical Society 2004). MR 2084879
Reference: [5] ANDREOTTI A.-GRAUERT H.: Theoreme de finitude pour la cohomologie des espaces complexes.Bull. Soc. Math. France 90 (1962), 193-259. MR 0150342
Reference: [6] HÖRMANDER L.: An Introduction to Complex Analysis in Several Variables.Van Nostrand, Princeton, N.J., 1990. Zbl 0685.32001, MR 1045639
Reference: [7] HÖRMANDER L.: $L^2$-estimates and existence theorems for the $\overline\partial$-operator.Acta Math. 113 (1965), 89-152. Zbl 0158.11002, MR 0179443
Reference: [8] KOHN J. J.-ROSSI H.: On the extension of holomorphic functions from the boundary of a complex manifold.Ann. of Math. 81 (1965), 451-472. MR 0177135
Reference: [9] KERZMAN N.: Hölder and $L^p$-estimates for solutions of $\overline\partial u = f$ in strongly pseudoconvex domains.Comm. Pure Appl. Math. 24 (1971), 301-380. Zbl 0217.13202, MR 0281944
Reference: [10] LAN M.: Hölder and $L^p$-estimates for the $\overline\partial$-equation on non-smooth strictly $q$-convex domains.Manuscripta Math. 74 (1992), 177-193. Zbl 0754.35092, MR 1147561
Reference: [11] OVRELID N.: Integral representation formulas and $L^p$-estimates for $\overline\partial$-equation.Math. Scand. 29 (1971), 137-160. MR 0324073
.

Files

Files Size Format View
MathSlov_54-2004-4_2.pdf 693.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo