Previous |  Up |  Next

Article

Title: The multiplicity criteria for zero points of second order differential equations (English)
Author: Došlý, Ondřej
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 2
Year: 1992
Pages: 181-193
.
Category: math
.
MSC: 34C10
idZBL: Zbl 0754.34026
idMR: MR1170102
.
Date available: 2009-09-25T10:37:15Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131731
.
Reference: [1] BORŮVKA O.: Lineare Differentialtransformationen 2.Ordnung, VEB, Deutscher Verlag der Wissenschaften, Berlin, 1971.
Reference: [2] COURANT R., HILBERT D.: Methods of Mathematical Physics.Vol. I, Interscience, New York, 1953. Zbl 0053.02805, MR 0065391
Reference: [3] DOŠLÝ O.: Riccati matrix differential equation and classification of disconjugate differential systems.Arch. Math. (Brno) 23 (1988), 231-242. MR 0930783
Reference: [4] DOŠLÝ O.: On traits formation of self-adjoint differential systems and their reciprocals.Ann. Polon. Math. 50 (1990), 223-234. MR 1064996
Reference: [5] DOŠLÝ O.: On some problems in oscillation theory of self-adjoint linear differential equations.Math. Slovaca 41 (1991), 101-111. MR 1094989
Reference: [6] DOŠLÝ O.: Conjugacy criteria for second order differential equations.Rocky Mountain J. Math., (To appear). Zbl 0794.34025, MR 1245450
Reference: [7] HAWKING S. W., PENROSE R.: The singularities of gravity collapse and cosmology.Proc. Roy. Soc. London Ser. A 314 ; 1970, 543-548. MR 0264959
Reference: [8] MACHÁT J.: Phase matrix of self-adjoint linear differential equations.(Czech.), Thesis, Brno, 1989.
Reference: [9] MÜLLER-PFEIFFER E.: Existence of conjugate points for second and fourth order differential equations.Proc. Roy. Soc. Edinburgh Sect. A 89 (1981), 281-291. Zbl 0481.34019, MR 0635764
Reference: [10] MÜLLER-PFEIFFER E.: On the existence of nodal domains for elliptic differential operators.Proc. Roy. Soc. Edinburgh Sect. A 94 (1983), 287-299. Zbl 0537.35027, MR 0709722
Reference: [11] MÜLLER-PFEIFFER E.: Nodal domains of one- or two-dimensional elliptic differential equations.Z. Anal. Anwendungen 7 (1988), 135-139. MR 0951346
Reference: [12] TIPLER F. J.: General relativity and conjugate ordinary differential equations.J. Differential Equations 30 (1978), 165-174. Zbl 0362.34023, MR 0513268
Reference: [13] WEIDMAN J.: Linear Operators in Hilbert Spaces.Springer-Verlag, New York-Berlin, 1982.
.

Files

Files Size Format View
MathSlov_42-1992-2_6.pdf 1.351Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo