Previous |  Up |  Next

Article

Title: The decay number and the maximum genus of a graph (English)
Author: Škoviera, Martin
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 42
Issue: 4
Year: 1992
Pages: 391-406
.
Category: math
.
MSC: 05C10
idZBL: Zbl 0760.05032
idMR: MR1195033
.
Date available: 2009-09-25T10:41:17Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131804
.
Reference: [1] BOUCHET A.: Genre maximum d'un Δ-graphe.In: Problèmes combinatoires et thèorie des graphes. Colloques Internat. C.N.R.S. 260, C.N.R.S., Paris, 1978, pp. 57-60. MR 0539940
Reference: [2] CHARTRAND G., LESNIAK L.: Graphs & Digraphs, 2nd Ed..Wadsworth & Brooks-Cole, 1986. Zbl 0666.05001, MR 0834583
Reference: [3] JAEGER F., XUONG N. H., PAYAN C.: Genre maximal et connectivité d'un graphe.C.R. Acad. Sci. Paris Sér. A 285 (1977), 337-339. Zbl 0369.05027
Reference: [4] KHOMENKO N. P., GLUKHOV A. D.: On upper embeddable graphs.(Russian) In: Graph Theory, Izd. Inst. Mat. Akad. Nauk Ukrain. SSR, Kiev, 1977, pp. 85-89. Zbl 0433.05026, MR 0531865
Reference: [5] KUNDU S.: Bounds on the number of disjoint spanning trees.J. Combin. Theory Ser. B 17 (1974), 199-203. MR 0369117
Reference: [6] NEBESKÝ L.: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31(106) (1981), 604-613. Zbl 0482.05034, MR 0631605
Reference: [7] NEBESKÝ L.: On locally quasiconnected graphs and their upper embeddability.Czechoslovak Math. J. 35(110) (1985), 162-166. Zbl 0584.05031, MR 0779344
Reference: [8] ŠKOVIERA M.: The maximum genus of graphs of diameter two.Discrete Math. 87 (1991), 175-180. Zbl 0724.05021, MR 1091590
Reference: [9] XUONG N. H.: How to determine the maximum genus of a graph.J. Combin. Theory Ser. B 26 (1979), 217-225. Zbl 0403.05035, MR 0532589
.

Files

Files Size Format View
MathSlov_42-1992-4_2.pdf 842.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo