Title:
|
3rd order differential invariants of coframes (English) |
Author:
|
Chao, Dao Qui |
Author:
|
Krupka, Demeter |
Language:
|
English |
Journal:
|
Mathematica Slovaca |
ISSN:
|
0139-9918 |
Volume:
|
49 |
Issue:
|
5 |
Year:
|
1999 |
Pages:
|
563-576 |
. |
Category:
|
math |
. |
MSC:
|
53A55 |
MSC:
|
58A20 |
idZBL:
|
Zbl 0962.53012 |
idMR:
|
MR1746900 |
. |
Date available:
|
2009-09-25T11:41:06Z |
Last updated:
|
2012-08-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/131845 |
. |
Reference:
|
[1] CHAO, DAO QUI: 2nd Order Differential Invariants on the Bundle of Frames.CSc (=PҺD) Dissertation, Masaгyk Univ., Brno (Czech Republic), 1991. |
Reference:
|
[2] DIEUDONNÉ J.: Treatise on Analysis, Vol. III.Academic Press, New York-London, 1972. Zbl 0268.58001, MR 0350769 |
Reference:
|
[3] GARCIA PÉREZ P. L.-MASQUE J. M.: Differential invariants on the bundles of linear frames.J. Georn. Phys. 7 (1990), 395-418. Zbl 0764.53017, MR 1120933 |
Reference:
|
[4] KOLÁŘ I.: On the prolongations of geometric object fields.An. Ştiinţ. Univ. "Al. I. Cuza" Iaşi Secţ. I a Mat. 17 (1971), 437-446. Zbl 0366.53037, MR 0305278 |
Reference:
|
[5] KOLÁŘ I.-MICHOR P.-SLOVÁK J.: Natural Operations in Differential Geometry.Springer-Verlag, Bеrlin, 1993. Zbl 0782.53013, MR 1202431 |
Reference:
|
[6] KRUPKA D.: A setting for generally invariant Lagrangian structures in tensor bundles.Bull. Acad. Polon. Sci. Sér. Math. Astr. Phys. 22 (1974), 967-972. Zbl 0305.58002, MR 0410793 |
Reference:
|
[7] KRUPKA D.: Elementary theory of differential invariants.Arch. Math. (Brno) 14 (1978), 207-214. Zbl 0428.58002, MR 0512763 |
Reference:
|
[8] KRUPKA D.: Local invariants of a linear connection.In: Diffеrеntial Gеomеtry, Budapеst (Hungary), 1979. Colloq. Math. Soc. János Bolyai 31, North Holland, Amstеrdam, 1982, pp. 349-369. MR 0706930 |
Reference:
|
[9] KRUPKA D.-JANYŠKA J.: Lectures on Differential Invariants.Brno Univеrsity, Brno (Czеch Rеpublic), 1990. Zbl 0752.53004, MR 1062026 |
Reference:
|
[10] KRUPKA D.-MIKOLÁŠOVÁ V.: On the uniqueness of some differential invariants: $d,\, [\, ,\, ],\, \bigtriangledown$.Czechoslovak Math. J. 34 (1984), 588-597. MR 0764440 |
Reference:
|
[11] KRUPKA M.: Natural Operators on Vector Fields and Vector Distributions.Doctoral Dissеrtation, Masaryk Univеrsity, Brno (Czеch Rеpublic), 1995. |
Reference:
|
[12] KRUPKA M.: Anti-holonomic jets and the Lie bracket.Arch. Math. (Brno) 34 (1998), 311 319. Zbl 0915.58005, MR 1645336 |
Reference:
|
[13] NIJENHUIS A.: Natural bundles and their general properties.In: Differеntial Gеomеtry (In honor of K. Yano), Kinokuniya, Tokyo, 1972, pp. 317-334. Zbl 0246.53018, MR 0380862 |
Reference:
|
[14] THOMAS T. Y.: Thе Differential Invariants of Generalized Spaces.Cambridgе Univеrsity Prеss, Cambridgе, 1934. |
Reference:
|
[15] WEYL H.: Thе Classical Groups.Princеton University Press, Princеton, NJ, 1946. MR 1488158 |
. |