Previous |  Up |  Next

Article

Title: On the Kurzweil integral for functions with values in ordered spaces. II. (English)
Author: Riečan, Beloslav
Author: Vrábelová, Marta
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 4
Year: 1993
Pages: 471-475
.
Category: math
.
MSC: 26A39
MSC: 28B15
idZBL: Zbl 0821.28007
idMR: MR1248980
.
Date available: 2009-09-25T10:50:53Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/131956
.
Reference: [1] FREMLIN D. H.: A direct proof of the Matthes-Wright integral extension theorem.J. London Math. Soc. 11 (1975), 276-284. Zbl 0313.06016, MR 0380345
Reference: [2] KURZWEIL J.: Nicht absolut Konvergente Integrate.Teubner, Leipzig, 1980. MR 0597703
Reference: [3] LUXEMBURG W. A., ZAANEN A. C.: Riesz Spaces.North-Holland, Amsterdam, 1971. Zbl 0231.46014
Reference: [4] MALIČKÝ P.: The monotone limit convergence theorem for elementary functions with values in a vector lattice.Comment. Math. Univ. Carolin. 27 (1986), 53-67. Zbl 0608.28004, MR 0843420
Reference: [5] RIEČAN B.: On the Kurzweil integral for functions with values in ordered spaces I.Acta Math. Univ. Comenian. 56-57 (1990), 75-83. Zbl 0735.28008, MR 1083014
Reference: [6] RIEČAN B.: On the Kurzweil integral in Compact Topological Spaces.Rad. Mat. 2 (1986), 151-163. Zbl 0623.28003, MR 0873695
Reference: [7] RIEČAN B., VOLAUF P.: On a technical lemma in lattice ordered groups.Acta Math. Univ. Comenian. 44-45 (1984), 31-35. Zbl 0558.06019, MR 0775002
Reference: [8] WRIGHT J. D. M.: The measure extension problem for vector lattices.Ann. Inst. Fourier (Grenoble) 21 (1971), 65-85. Zbl 0215.48101, MR 0330411
.

Files

Files Size Format View
MathSlov_43-1993-4_7.pdf 389.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo