Previous |  Up |  Next

Article

Title: Edge and vertex operations on upper embeddable graphs (English)
Author: Fu, Hung-Lin
Author: Tsai, Ming-Chun
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 46
Issue: 1
Year: 1996
Pages: 9-19
.
Category: math
.
MSC: 05C10
idZBL: Zbl 0858.05039
idMR: MR1414405
.
Date available: 2009-09-25T11:12:00Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132536
.
Reference: [1] BEHZAD M.-CHARTRAD G.-LESNIAK-FOSTER L.: Graphs and Digraphs.Prindle, Weber and Schmidt, Boston, 1979.
Reference: [2] FU H. L.-TSAI M. C.: The maximum genus of diameter three graphs.Prepгint. Zbl 0862.05027
Reference: [3] JUNGERMAN M.: A characterization of upper embeddable graphs.Trans. Amer. Math. Soc. 241 (1978), 401-406. Zbl 0379.05025, MR 0492309
Reference: [4] KUNDU S.: Bounds on the number of disjoint spanning trees.J. Combin. Theory Ser. B 17 (1974), 199-203. MR 0369117
Reference: [5] NEBESKÝ L.: A new characterization of the maximum genus of a graph.Czechoslovak Math. J. 31(106) (1981), 604-613. Zbl 0482.05034, MR 0631605
Reference: [6] NEBESKÝ L.: A note on upper embeddable graphs.Czechoslovak Math. J. 33(108) (1983), 37-40. Zbl 0518.05029, MR 0687415
Reference: [7] NEBESKÝ L.: On 2-cell embeddings of graphs with minimum numbers of regions.Czechoslovak Math. J. 35(110) (1985), 625-631. Zbl 0586.05015, MR 0809045
Reference: [8] NEDELA R.-ŠKOVIERA M.: The maximum genus of a graph and doubly Eulerian trails.Boll Un. Mat. Ital. B (7) 4 (1990), 541-551. Zbl 0715.05018, MR 1073633
Reference: [9] ŠKOVIERA.-M.: The maximum genus of graphs of diameter two.Discrete Math. 87 (1991), 175-180. Zbl 0724.05021, MR 1091590
Reference: [10] XUONG N. H.: How to determine the maximum genus of a graph.J. Combin. Theory Ser. B 26 (1979), 217-225. Zbl 0403.05035, MR 0532589
.

Files

Files Size Format View
MathSlov_46-1996-1_2.pdf 761.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo