Previous |  Up |  Next

Article

Title: Graphs which are edge-locally $C_n$ (English)
Author: Nedela, Roman
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 47
Issue: 4
Year: 1997
Pages: 381-391
.
Category: math
.
MSC: 05C10
MSC: 05C25
MSC: 05C75
idZBL: Zbl 0958.05037
idMR: MR1796951
.
Date available: 2009-09-25T11:23:58Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132828
.
Reference: [1] BLASS A.-HARARY F.-MILLER Z.: Which trees are link graphs?.J. Combin. Theory Ser. B 29 (1980), 277-292. Zbl 0448.05028, MR 0602420
Reference: [2] BROWN M.-CONNELLY R.: On graphs with a constant link.In: New Directions in The Theory of Graphs (F. Harary, ed.), Academic Press, New York, 1973, pp. 19-51. Zbl 0258.05104, MR 0347685
Reference: [3] BULITKO V. K.: O grafach s zadanymi okruzeniami veršin.Trudy Mat. Inst. Steklov. 133 (1973), 78-94. MR 0434882
Reference: [4] BUSSET D.: Graphs which are locally a cube.Discrete Math. 46 (1983), 221-229. MR 0716442
Reference: [5] CHILTON B. L.-GOULD R.-POLIMENI A. D.: A note on graphs whose neighbourhoods are n-cycles.Geom. Dedicata 3 (1974), 289-294. MR 0357220
Reference: [6] COXETER H. S. M.-MOSER W. O.: Generators and Relations for Discrete Groups.(3rd. ed.). Ergeb. Math. Grenzgeb. 14, Springer, Berlin, 1972. Zbl 0239.20040, MR 0349820
Reference: [7] FRONČEK D.: Graphs with a given edge neighbourhood.Czechoslovak Math. J. 39(114) (1989), 627-630. Zbl 0724.05063, MR 1017997
Reference: [8] GROSS J. L.-TUCKER T. W.: Topological Graph Theory.Wiley-Interscience, New York, 1987. Zbl 0621.05013, MR 0898434
Reference: [9] HALL J. I.: A local characterization of the Johnson Scheme.Combinatorica 7 (1987), 77-85. Zbl 0653.05019, MR 0905154
Reference: [10] HALL J. I.: Locally Petersen graphs.J. Graph Theory 4 (1980), 173-187. Zbl 0407.05041, MR 0570352
Reference: [11] HARARY F.: Graph Theory.Addison-Wesley, Reading, 1969. Zbl 0196.27202, MR 0256911
Reference: [12] HELL P.: Graphs with given neighbourhoods I.In: Problémes combinatoires et theorie des graphes, Proc. Coll. Int. C. N. R. S., Orsay, 1976.
Reference: [13] JENDROL' S.-NEDELA R.-ŠKOVIERA M.: Generating maps from their planar quotients.Math. Slovaca 47 (1997), 155-170. MR 1476864
Reference: [14] JONES G. A.-SINGERMAN D.: Theory of maps on orientable surfaces.Proc. London Math. Soc. (3) 37 (1978), 273-307. Zbl 0391.05024, MR 0505721
Reference: [15] NEDELA R.-ŠKOVIERA M.: Exponents of orientable maps.Proc. London Math. Soc. 75 (1997), 1-31. Zbl 0877.05012, MR 1444311
Reference: [16] PARSONS T. D.-PISANSKI T.: Graphs which are locally paths.In: Combinatorics and Graph Theory (Z. Skupien, M. Borowiecky, eds.), Banach Center Publications Vol. 25, PWN - Pol. Sci. Publ., Warszawa, 1989, pp. 163-175. Zbl 0757.05071, MR 1097642
Reference: [17] RONAN M. A.: On the second homotopy group of certain simplicial complexes and some combinatorial applications.Quart. J. Math. Oxford Ser. (2) 32 (1981), 225-233. Zbl 0466.57004, MR 0615196
Reference: [18] VINCE A.: Locally homogeneous graphs from groups.J. Graph Theory 5 (1981), 417-422. Zbl 0472.05055, MR 0635704
Reference: [19] VOGLER W.: Representing groups by graphs with constant link and hypergraphs.J. Graph Theory 10 (1986), 461-475. Zbl 0632.05034, MR 0867211
Reference: [20] WHITE A. T.: Graphs, Groups and Surfaces.North-Holland, Amsterdam, 1984. Zbl 0551.05037, MR 0780555
Reference: [21] ZELINKA B.: Edge neighbourhood graphs.Czechoslovak Math. J. 36(111) (1986), 44-47. Zbl 0599.05054, MR 0822865
Reference: [22] ZYKOV A. A.: Problem 30.In: Theory of Graphs and Its Applications. Proc. Symp. Smolenice 1963, Praha, 1964, pp. 164-165.
.

Files

Files Size Format View
MathSlov_47-1997-4_1.pdf 866.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo