Previous |  Up |  Next

Article

Title: Fubini theorems for bornological measures (English)
Author: Ballvé, Maria E.
Author: Jiménez Guerra, P.
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 2
Year: 1993
Pages: 137-148
.
Category: math
.
MSC: 28A35
MSC: 28B05
MSC: 46G10
idZBL: Zbl 0874.28014
idMR: MR1274598
.
Date available: 2009-09-25T10:46:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/132915
.
Reference: [1] BALLVE M. E.: Espacios $L^\alpha$ e integración bornológica.Collect. Math. 39 (1988), 21-29. MR 1009246
Reference: [2] BALLVE M. E., de MARIA J. I.: On the dual of $L^\alpha$ for locally convex spaces.Atti Sem. Mat. Fis. Univ. Modena 38 (1990), 165-169. MR 1122677
Reference: [3] BARTLE R. G.: A general bilinear vector integral.Studia Math. 15 (1956), 337-352. Zbl 0070.28102, MR 0080721
Reference: [4] BHASKARA RAO M.: Countably additivity of a set function induced by two vector valued measures.Indiana Univ. Math. J. 21 (1972), 847-848. MR 0296246
Reference: [5] BOMBAL F.: Medida e integración bornológica.Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid 75 (1981), 115-137. MR 0641192
Reference: [6] BOMBAL F.: El teorema de Radon-Nikodym en espacios bornologicos.Rev. Real Acad. Cienc. Exact. Fis. Natur. Madrid 75 (1981), 140-154. MR 0641193
Reference: [7] DIESTEL J., UHL J. J.: Vector Measures.Amer. Math. Soc., Providence, RI, 1977. Zbl 0369.46039, MR 0453964
Reference: [8] DOBRAKOV I.: On integration in Banach spaces III.Czechoslovak Math. J. 29 (1979), 478-499; ibid. IV, 30 (1980), 259-279; ibid. V, 30 (1980), 610-628; ibid. VII, 38 (1988), 434-449. Zbl 0429.28011, MR 0536071
Reference: [9] DUCHOŇ M.: On the projective tensor product of vector-valued measures II.Mat. Čas. 19 (1969), 228-234. MR 0308356
Reference: [10] DUCHOŇ M., KLUVÁNEK I.: Inductive tensor product of vector valued measures.Mat. Čas. 17 (1967), 108-112. Zbl 0162.19101, MR 0229786
Reference: [11] DUDLEY R. M., PAKULA L.: A counter-example on the inner product of measures.Indiana Univ. Math. J. 21 (1972), 843-845. Zbl 0221.28003, MR 0296245
Reference: [12] FERNANDEZ F. J.: Teoremas de Fubini en integracion bilineal.Rev. Real Acad. Cienc. Exact. Fís. Natur. Madrid 82 (1988), 101-114. MR 0979064
Reference: [13] FERNANDEZ F. J.: On the product of operator valued measures.Czechoslovak Math. J. 40 (1990), 543-562. Zbl 0793.28009, MR 1084891
Reference: [14] GROTHENDIECK A.: Sur les espaces (F) at (DF).Summa Brasilensis 3 (1954), 57-122. MR 0075542
Reference: [15] HOGBE-NLEND H.: Theorie des homologies et applications.Lecture Notes in Math. 213, Springer-Verlag, Berlin, 1971. MR 0625157
Reference: [16] HOGBE-NLEND H.: Techniques de homologies en theorie des espaces vectoriels topologiques et des espaces nucleaires.Lecture Notes in Math. 331, Springer-Verlag, Berlin, 1973. MR 0482033
Reference: [17] HOGBE-NLEND H.: Les homologies et Vanalyse fonctionelle.Univ. de Bordeaux I, Bordeaux, 1974.
Reference: [18] HOGBE-NLEND H.: Bomologies and functional analysis.North-Holland Pub. Co., Amsterdam, 1977. MR 0500064
Reference: [19] HUNEYCUTT J. E.: Products and convolutions of vector valued set functions.Studia Math. 41 (1972), 119-129. Zbl 0233.28013, MR 0302855
Reference: [20] RAO CHIVUKULA R., SASTRY A. S.: Product vector measures via Bartle integrals.J. Math. Anal. Appl. 96 (1983), 180-195. Zbl 0551.28009, MR 0717502
Reference: [21] SWARTZ C.: Product of vector measures.Mat. Čas. 24 (1974), 289-299. MR 0382585
Reference: [22] SWARTZ C.: A generalization of a theorem of Duchon on products of vector measures.J. Math. Anal. Appl. 51 (1975), 621-628. Zbl 0312.28015, MR 0374382
.

Files

Files Size Format View
MathSlov_43-1993-2_3.pdf 968.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo