Previous |  Up |  Next

Article

Title: On the torsion groups of the cobordism groups of immersions (English)
Author: Szücs, András
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 3
Year: 1993
Pages: 341-344
.
Category: math
.
MSC: 57R42
MSC: 57R90
idZBL: Zbl 0790.57022
idMR: MR1241371
.
Date available: 2009-09-25T10:49:11Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133051
.
Reference: [1] BURLET O.: Cobordismes de plongements et produits homotopiques.Comment. Math. Helv. 46 (1971), 277-288. Zbl 0221.57017, MR 0295367
Reference: [2] GOLUBJATNIKOV V.: Bordism rings with split normal bundles.Russian Math. Surveys 34 (1979), 172-176. MR 0562828
Reference: [3] KOSCHORKE U.: Vector Fields and Other Vector Bundle Morphisms - a Singularity Approach.Lecture Notes in Math. 847, Springer-Verlag, Berlin-New York, 1981. Zbl 0459.57016, MR 0611333
Reference: [4] LIULEVICIUS A.: A theorem in homological algebra and stable homotopy of projective spaces.Trans. Amer. Math. Soc. 109 (1963), 540-552. Zbl 0134.19202, MR 0156346
Reference: [5] PASTOR G.: On bordism groups of immersions.Trans. Amer. Math. Soc. 283 (1984), 295-301. Zbl 0546.57014, MR 0735423
Reference: [6] SALOMONSEN H. A.: On the homotopy groups of Thom complexes and unstable bordism.In: Proc. Adv. Study Inst. Alg. Top. August 10-23, 1970, Aarhus, Denmark. Zbl 0241.57016, MR 0356101
Reference: [7] SZÜCS A.: On the cobordism groups of immersions and embeddings.Math. Proc. Cambridge Philos. Soc. 109 (1991), 343-349. Zbl 0722.57017, MR 1085401
Reference: [8] WELLS R.: Cobordism groups of immersions.Topology 5 (1966), 281-294. Zbl 0145.20202, MR 0196760
.

Files

Files Size Format View
MathSlov_43-1993-3_9.pdf 352.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo