Previous |  Up |  Next

Article

Title: Differential forms on manifolds with a polynomial structure (English)
Author: Vanžurová, Alena
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 48
Issue: 5
Year: 1998
Pages: 527-533
.
Category: math
.
MSC: 58A05
MSC: 58A10
MSC: 58A30
idZBL: Zbl 0965.58002
idMR: MR1697614
.
Date available: 2009-09-25T11:33:28Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133155
.
Reference: [1] CHERN S. S.: Complex Manifolds.Izd. Inostr. Lit., Moskvа, 1961. Zbl 0098.35201
Reference: [2] GOLDBERG S. L.-PETRIDIS N. C.: Differentiable solutions of algebraic equations on manifolds.Kôdаi Mаth. Sem. Rep. 25 (1973), 111-128. Zbl 0253.53034, MR 0315627
Reference: [3] GOLDBERG S. I.-YANO K.: Polynomial structures on manifolds.Kôdаi Mаth. Sem. Rep. 22 (1970), 199-218. Zbl 0194.52702, MR 0267478
Reference: [4] KOBAYSHI S.: Foundations of Differential Geometry II.Intersc. Publ., New York-London-Sydney, 1969.
Reference: [5] LEHMANN-LEJEUNE J.: Integrabilité des G-structures definies par une 1-forme 0-deformable a valeurs dans le fibre tangentx.Ann. Inst. Fourier (Grenoble) 16 (1966), 329 387. MR 0212720
Reference: [6] LEHMANN-LEJEUNE J.: Sur ľintégrabilité de certaines G-structures.C. R. Acаd. Sci. Pаris Sér. I Mаth. 258 (1984), 32-35.
Reference: [7] MIZNER R. I.: Almost CR structures, f -structures, almost product structures and associated connections.Rocky Mountаin J. Mаth. 23 (1993), 1337-1359. Zbl 0806.53030, MR 1256452
Reference: [8] PHAM MAU QUAM: Introduction à la géométrie des variétés différentiables.Dunod, Pаris, 1968.
Reference: [9] VANŽURA J.: Integrability conditions for polynomial structures.Kodаi Mаth. Sem. Rep. 27 (1976), 42-50. Zbl 0326.53050, MR 0400106
Reference: [10] VANŽUROVÁ A.: Polynomial structures with double roots.Actа Univ. Pаlаck. Olomouc . Fаc. Rerum Nаtur. Mаth. 36 (1997), 187-196. Zbl 0958.53023, MR 1620557
Reference: [11] WALKER A. G.: Almost-product structures.In: Differentiаl geometry. Proc. Sympos. Pure Mаth. 3, Amer. Mаth. Soc, Providence, RI, 1961, pp. 94-100. Zbl 0103.38801, MR 0123993
Reference: [12] YANO K.: On a structure defined by a tensor field $f$ of type $(1,1)$ satisfying $f^3 + f = 0$.Tensor 14 (1963), 99-109. MR 0159296
.

Files

Files Size Format View
MathSlov_48-1998-5_6.pdf 419.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo