Previous |  Up |  Next

Article

Title: Random sets and their asymptotic measure (English)
Author: Straka, František
Author: Štěpán, Josef
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 43
Issue: 2
Year: 1993
Pages: 207-219
.
Category: math
.
MSC: 60D05
MSC: 60F17
idZBL: Zbl 0773.60010
idMR: MR1274603
.
Date available: 2009-09-25T10:47:45Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133183
.
Reference: [1] BILLINGSLEY P.: Convergence of Probability Measures.J. Wiley, New York, 1968. Zbl 0172.21201, MR 0233396
Reference: [2] DENI J., CHOQUET G.: Sur l'equation de convolution μ = μ * σ.C. R. Acad. Sci. Paris Sér. I Math. 250 (1960), 799-801. MR 0119041
Reference: [3] HALMOS P. R.: Lectures on Ergodic Theory.(Russian Translation), Izd. In. Lit., Moscow, 1959. MR 0111817
Reference: [4] HALMOS P. R.: Measure Theory.Van Nostrand, London, 1968. MR 0033869
Reference: [5] HURT J., MACHEK J., ŠTĚPÁN J., VORLÍČKOVÁ D.: The intersections of random finite sets.Math. Slovaca 32 (1982), 229-237. Zbl 0497.60013, MR 0669998
Reference: [6] STRAKA F.: Random Sets and their Intersections.(Czech), PhD-theses, Charles University, Prague, 1986.
Reference: [7] STRAKA F., ŠTĚPÁN J.: Random sets in [0, 1].In: Proc. of 10th Prague Conference on Information Theory 1986, Academia, Prague, 1988, pp. 349-355. MR 1136341
Reference: [8] SCHWARTZ L.: Radon Measures.Oxford University Press, Oxford, 1973. Zbl 0298.28001, MR 0426084
Reference: [9] ŠTĚPÁN J.: Some notes on the convolution semigroup of probabilities on a metric group.Comment. Math. Univ. Carolin. 10 (1969), 613-623. Zbl 0193.44702, MR 0259971
.

Files

Files Size Format View
MathSlov_43-1993-2_8.pdf 847.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo