Previous |  Up |  Next

Article

Title: The non-normal quartic CM-fields and the dihedral octic CM-fields with ideal class groups of exponent $\le 2$ (English)
Author: Louboutin, Stéphane
Author: Yang, Hee-Sun
Author: Kwon, Soun-Hi
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 5
Year: 2004
Pages: 535-574
.
Category: math
.
MSC: 11R29
MSC: 11R37
MSC: 11Y40
idZBL: Zbl 1108.11085
idMR: MR2114623
.
Date available: 2009-09-25T14:23:47Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133206
.
Reference: [Ear] EARNEST A. G.: Exponents of the class groups of imaginary abelian number fields.Bull. Austral. Math. Soc. 35 (1987), 231-245. Zbl 0597.12006, MR 0878434
Reference: [Lan1] LANG S.: Cyclotomic Fields I and II.(combined 2nd ed.). Grad. Texts in Math. 121, Springer-Verlag, New York, 1990. Zbl 0704.11038, MR 1029028
Reference: [Lan2] LANG S.: Algebraic Number Theory.(2nd ed.). Grad. Texts in Math. 110, Springer-Verlag, New York, 1994. Zbl 0811.11001, MR 1282723
Reference: [Lo1] LOUBOUTIN S.-OKAZAKI R.: Determination of all non-normal quartic $CM$-fields and of all non-abelian normal octic $CM$-fields with class number one.Acta Arith. 67 (1994), 47-62. Zbl 0809.11069, MR 1292520
Reference: [Lo2] LOUBOUTIN S.-OKAZAKI R.: The class number one problem for some nonabelian normal $CM$-fields of 2-power degrees.Proc. London Math. Soc. (3) 76 (1998), 523-548. MR 1616805
Reference: [Lo3] LOUBOUTIN S.-OKAZAKI R.: Determination of all quaternion $CM$-fields with ideal class groups of exponent 2.Osaka J. Math. 36 (1999), 229-257. Zbl 0952.11025, MR 1736479
Reference: [Lou1] LOUBOUTIN S.: Continued fractions and real quadratic fields.J. Number Theory 30 (1988), 167-176. Zbl 0652.12002, MR 0961914
Reference: [Lou2] LOUBOUTIN S.: On the class number one problem for the non-normal quartic $CM$-fields.Tohoku Math. J. (2) 46 (1994), 1-12. MR 1256724
Reference: [Lou3] LOUBOUTIN S.: Calcul du nombre de classes des corps de nombres.Pacific J. Math. 171 (1995), 455-467. Zbl 0854.11060, MR 1372239
Reference: [Lou4] LOUBOUTIN S.: Determination of all nonquadratic imaginary cyclic number fields of 2-power degrees with ideal class groups of exponents $< 2$., Math. Comp. 64 (1995), 323-340. MR 1248972
Reference: [Lou5] LOUBOUTIN S.: The class number one problem for the non-abelian normal $CM$-fields of degre 16.Acta Arith. 82 (1997), 173-196. MR 1477509
Reference: [Lou6] LOUBOUTIN S.: Powerful necessary conditions for class number problems.Math. Nachr. 183 (1997), 173-184. Zbl 0871.11078, MR 1434981
Reference: [Lou7] LOUBOUTIN S.: Hasse unit indices of dihedral octic $CM$-fields.Math. Nachr. 215 (2000), 107-113. Zbl 0972.11105, MR 1768197
Reference: [Lou8] LOUBOUTIN S.: Explicit lower bounds for residues at $s = 1$ of Dedekind zeta functions and relative class numbers of $CM$-fields.Trans. Amer. Math. Soc. 355 (2003), 3079-3098. Zbl 1026.11085, MR 1974676
Reference: [Mor] MORTON P.: On Rédei's theory of the Pell equation.J. Reine Angew. Math. 307/308 (1979), 373-398. Zbl 0395.12018, MR 0534233
Reference: [YK] YANG H.-S.-KWON S.-H.: The non-normal quartic $CM$-fields and the octic dihedral $CM$-fields with relative class number two.J. Number Theory 79 (1999), 175-193. Zbl 0976.11051, MR 1728146
.

Files

Files Size Format View
MathSlov_54-2004-5_10.pdf 2.480Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo