Previous |  Up |  Next

Article

Title: Parametrized solutions of Diophantine equations (English)
Author: Lettl, Günter
Language: English
Journal: Mathematica Slovaca
ISSN: 0139-9918
Volume: 54
Issue: 5
Year: 2004
Pages: 465-471
.
Category: math
.
MSC: 11D59
MSC: 14G05
idZBL: Zbl 1108.11028
idMR: MR2114617
.
Date available: 2009-09-25T14:23:04Z
Last updated: 2012-08-01
Stable URL: http://hdl.handle.net/10338.dmlcz/133271
.
Reference: [Heu1] HEUBERGER C.: On general families of parametrized Thue equations.In: Algebraic Number Theory and Diophantine Analysis, Proceedings of the Internat. Conf. in Graz 1998 (F. Halter-Koch, R. F. Tichy, eds.), Walter de Gruyter, Berlin, 2000, pp. 215-238. MR 1770464
Reference: [Heu2] HEUBERGER C.: On a conjecture of E. Thomas concerning parametrized Thue equations.Acta Arith. 98 (2001), 375-394. Zbl 0973.11043, MR 1829779
Reference: [Heu3] HEUBERGER C.: On explicit bounds for the solutions of a class of parametrized Thue equations of arbitrary degree.Monatsh. Math. 132 (2001), 325-339. Zbl 1009.11023, MR 1844070
Reference: [Jac] JACOBSON N.: Basic Algebra I.W. H. Freeman and Co, New York, 1985. Zbl 0557.16001, MR 0780184
Reference: [Mai] MAILLET E.: Determination des points entiers des courbes algebriques unicursales a coefficients entiers.Comptes Rendus Paris 168 (1919), 217-220.
Reference: [Ro] ROSEN M.: Number Theory in Function Fields.Grad. Texts in Math. 210, Springer Verlag, New York, 2002. Zbl 1043.11079, MR 1876657
Reference: [Sie] SIEGEL C. L.: Über einige Anwendungen diophantischer Approximationen.Abh. Preuss. Akad. Wiss., Phys.-Math. Kl. 1 (1929).
Reference: [St] STICHTENOTH H.: Algebraic Function Fields and Codes.Springer Verlag, Berlin, 1993. Zbl 0816.14011, MR 1251961
Reference: [Tho] THOMAS E.: Solutions to certain families of Thue equations.J. Number Theory 43 (1993), 319-369. Zbl 0774.11013, MR 1212687
.

Files

Files Size Format View
MathSlov_54-2004-5_4.pdf 398.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo