Title:
|
Singular nonlinear problem for ordinary differential equation of the second order (English) |
Author:
|
Rachůnková, Irena |
Author:
|
Tomeček, Jan |
Language:
|
English |
Journal:
|
Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica |
ISSN:
|
0231-9721 |
Volume:
|
46 |
Issue:
|
1 |
Year:
|
2007 |
Pages:
|
75-84 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper deals with the singular nonlinear problem \[ u^{\prime \prime }(t) + f(t,u(t),u^{\prime }(t)) = 0,\quad u(0) = 0,\quad u^{\prime }(T) = \psi (u(T)), \] where $f \in \mathop {\mathit{Car}}((0,T)\times D)$, $D = (0,\infty )\times $. We prove the existence of a solution to this problem which is positive on $(0,T]$ under the assumption that the function $f(t,x,y)$ is nonnegative and can have time singularities at $t = 0$, $t = T$ and space singularity at $x = 0$. The proof is based on the Schauder fixed point theorem and on the method of a priori estimates. (English) |
Keyword:
|
singular ordinary differential equation of the second order |
Keyword:
|
lower and upper functions |
Keyword:
|
nonlinear boundary conditions |
Keyword:
|
time singularities |
Keyword:
|
phase singularity |
MSC:
|
34B15 |
MSC:
|
34B16 |
MSC:
|
34B18 |
idZBL:
|
Zbl 1147.34012 |
idMR:
|
MR2387495 |
. |
Date available:
|
2009-08-27T10:39:16Z |
Last updated:
|
2012-05-04 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/133395 |
. |
Reference:
|
[1] Afuwape A. U.: Ultimate boundedness results for a certain system of third order non-linear differential equation.J. Math. Annal. Appl. 97 (1983), 140–150. MR 0721235 |
Reference:
|
[2] Afuwape A. U., Omeike M. O.: Further ultimate boundedness of solutions of some system of third order non-linear ordinary differential equations.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. MR 2124598 |
Reference:
|
[3] Browder F. E.: On a generalization of the Schauder fixed point theorem.Duke Math. J. 26 (1959), 291–303. Zbl 0086.10203, MR 0105629 |
Reference:
|
[4] Ezeilo J. O. C., Tejumola H. O.: Boundedness and periodicity of solutions of a certain system of third order non-linear differential equations.Annali Mat. Pura. Appl. 74 (1966), 283–316. Zbl 0148.06701, MR 0204787 |
Reference:
|
[5] Meng F. W.: Ultimate boundedness results for a certain system of third order nonlinear differential equations.J. Math. Anal. Appl. 177 (1993), 496–509. MR 1231497 |
Reference:
|
[6] Omeike M. O.: Qualitative Study of solutions of certain n-system of third order non-linear ordinary differential equations.Ph.D. Thesis, University of Agriculture, Abeokuta, 2005. |
Reference:
|
[7] Reissig R., Sansone G., Conti R.: Non-linear Differential Equations of higher order. : No-ordhoff International Publishing., 1974. MR 0344556 |
Reference:
|
[8] Tejumola H. O.: On a Lienard type matrix differential equation.Atti Accad. Naz. Lincei Rendi. Cl. Sci. Fis. Mat. Natur (8) 60, 2 (1976), 100–107. Zbl 0374.34035, MR 0473341 |
Reference:
|
[9] Yoshizawa T.: Stability Theory by Liapunov’s Second Method. : The Mathematical Society of Japan., 1966. MR 0208086 |
. |