Previous |  Up |  Next

Article

Title: Singular nonlinear problem for ordinary differential equation of the second order (English)
Author: Rachůnková, Irena
Author: Tomeček, Jan
Language: English
Journal: Acta Universitatis Palackianae Olomucensis. Facultas Rerum Naturalium. Mathematica
ISSN: 0231-9721
Volume: 46
Issue: 1
Year: 2007
Pages: 75-84
Summary lang: English
.
Category: math
.
Summary: The paper deals with the singular nonlinear problem \[ u^{\prime \prime }(t) + f(t,u(t),u^{\prime }(t)) = 0,\quad u(0) = 0,\quad u^{\prime }(T) = \psi (u(T)), \] where $f \in \mathop {\mathit{Car}}((0,T)\times D)$, $D = (0,\infty )\times $. We prove the existence of a solution to this problem which is positive on $(0,T]$ under the assumption that the function $f(t,x,y)$ is nonnegative and can have time singularities at $t = 0$, $t = T$ and space singularity at $x = 0$. The proof is based on the Schauder fixed point theorem and on the method of a priori estimates. (English)
Keyword: singular ordinary differential equation of the second order
Keyword: lower and upper functions
Keyword: nonlinear boundary conditions
Keyword: time singularities
Keyword: phase singularity
MSC: 34B15
MSC: 34B16
MSC: 34B18
idZBL: Zbl 1147.34012
idMR: MR2387495
.
Date available: 2009-08-27T10:39:16Z
Last updated: 2012-05-04
Stable URL: http://hdl.handle.net/10338.dmlcz/133395
.
Reference: [1] Afuwape A. U.: Ultimate boundedness results for a certain system of third order non-linear differential equation.J. Math. Annal. Appl. 97 (1983), 140–150. MR 0721235
Reference: [2] Afuwape A. U., Omeike M. O.: Further ultimate boundedness of solutions of some system of third order non-linear ordinary differential equations.Acta Univ. Palacki. Olomuc., Fac. rer. nat., Math. 43 (2004), 7–20. MR 2124598
Reference: [3] Browder F. E.: On a generalization of the Schauder fixed point theorem.Duke Math. J. 26 (1959), 291–303. Zbl 0086.10203, MR 0105629
Reference: [4] Ezeilo J. O. C., Tejumola H. O.: Boundedness and periodicity of solutions of a certain system of third order non-linear differential equations.Annali Mat. Pura. Appl. 74 (1966), 283–316. Zbl 0148.06701, MR 0204787
Reference: [5] Meng F. W.: Ultimate boundedness results for a certain system of third order nonlinear differential equations.J. Math. Anal. Appl. 177 (1993), 496–509. MR 1231497
Reference: [6] Omeike M. O.: Qualitative Study of solutions of certain n-system of third order non-linear ordinary differential equations.Ph.D. Thesis, University of Agriculture, Abeokuta, 2005.
Reference: [7] Reissig R., Sansone G., Conti R.: Non-linear Differential Equations of higher order. : No-ordhoff International Publishing., 1974. MR 0344556
Reference: [8] Tejumola H. O.: On a Lienard type matrix differential equation.Atti Accad. Naz. Lincei Rendi. Cl. Sci. Fis. Mat. Natur (8) 60, 2 (1976), 100–107. Zbl 0374.34035, MR 0473341
Reference: [9] Yoshizawa T.: Stability Theory by Liapunov’s Second Method. : The Mathematical Society of Japan., 1966. MR 0208086
.

Files

Files Size Format View
ActaOlom_46-2007-1_8.pdf 437.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo