Previous |  Up |  Next

Article

Title: Bounded expansion in web graphs (English)
Author: Gago, Silvia
Author: Schlatter, Dirk
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 50
Issue: 2
Year: 2009
Pages: 181-190
Summary lang: English
.
Category: math
.
Summary: In this paper we study various models for web graphs with respect to bounded expansion. All the deterministic models even have constant expansion, whereas the copying model has unbounded expansion. The most interesting case turns out to be the preferential attachment model --- which we conjecture to have unbounded expansion, too. (English)
Keyword: graph minors
Keyword: bounded expansion
Keyword: webgraphs
MSC: 05C83
MSC: 90B10
MSC: 90B15
MSC: 94C15
idZBL: Zbl 1212.05248
idMR: MR2537830
.
Date available: 2009-08-18T12:24:27Z
Last updated: 2013-09-22
Stable URL: http://hdl.handle.net/10338.dmlcz/133427
.
Reference: [1] Albert R., Barabási A.-L.: Statistical mechanics of complex networks.Rev. Modern Phys. 74 (2002), 47--97. MR 1895096, 10.1103/RevModPhys.74.47
Reference: [2] Andrade J.S., Jr., Herrmann H.J., Andrade R.F.S., da Silva L.R.: Apollonian networks: Simultaneously scale-free, small world, Euclidean, space filling, and with matching graphs.Phys. Rev. Lett. 94 (2005), 018702. 10.1103/PhysRevLett.94.018702
Reference: [3] Barabási A.-L., Albert R.: Emergence of scaling in random networks.Science 286 (1999), 509--512. MR 2091634, 10.1126/science.286.5439.509
Reference: [4] Barabási A.-L., Ravasz E., Vicsek T.: Deterministic scale-free networks.Phys. A 299 (2001), 559--564. 10.1016/S0378-4371(01)00369-7
Reference: [5] Bollobás B., Riordan O.: Mathematical results on scale-free random graphs.in Handbook of Graphs and Networks: From the Genome to the Internet (S. Bornholdt and H.G. Schuster, Eds.), Wiley-VCH, Weinheim, 2003, pp. 1--34. MR 2016117
Reference: [6] Bollobás B., Riordan O.: The diameter of a scale-free random graph.Combinatorica 4 (2004), 5--34. MR 2057681, 10.1007/s00493-004-0002-2
Reference: [7] Bollobás B., Riordan O., Spencer J., Tusnády G.: The degree sequence of a scale-free random graph process.Random Structures Algorithms 18 (2001), 279--290. MR 1824277, 10.1002/rsa.1009
Reference: [8] Bonato A.: A survey of models of the web graph.Proceedings of the 1st Workshop on Combinatorial and Algorithmic Aspects of Networking, Springer, Berlin, 2005, pp. 159--172. MR 2182910
Reference: [9] Bonato A., Janssen J.: Infinite limits of copying models of the web graph.Internet Math. 1 (2004), 193--213. Zbl 1080.05084, MR 2077225, 10.1080/15427951.2004.10129087
Reference: [10] Comellas F., Fertin G., Raspaud A.: Recursive graphs with small-world scale-free properties.Phys. Rev. E 69 (2004), 037104. 10.1103/PhysRevE.69.037104
Reference: [11] Dorogovtsev S.N., Goltsev A.V., Mendes J.F.F.: Pseudofractal scale-free web.Phys. Rev. E 65 (2002), 066122. 10.1103/PhysRevE.65.066122
Reference: [12] Doye J.P.K., Massen C.P.: Self-similar disk packings as model spatial scale-free networks.Phys. Rev. E 71 (2005), 016128. MR 2139325, 10.1103/PhysRevE.71.016128
Reference: [13] Dvořák S.: Asymptotical structures of combinatorial objects.PhD Thesis, Charles University, Prague, 2007.
Reference: [14] Flexman A., Frieze A., Fenner T.: High degree vertices and eigenvalues in the preferential attachment graph.Internet Math. 2 (2005), 1--19. MR 2166274, 10.1080/15427951.2005.10129097
Reference: [15] Iguchi K., Yamada H.: Exactly solvable scale-free network model.Phys. Rev. E 71 (2005), 036144. MR 2135710, 10.1103/PhysRevE.71.036144
Reference: [16] Kleinberg J., Kumar S.R., Raghavan P., Rajagopalan S., Tomkins A.: The web as a graph: Measurements, models and methods.Proceedings of the International Conference on Combinatorics and Computing, Springer, Berlin, 1999, pp. 1--17. MR 1730317
Reference: [17] Kumar S.R., Raghavan P., Rajagopalan S., Sivakumar D., Tomkins A., Upfal E.: Stochastic models for the web graph.Proceedings of the 41st IEEE Symp. on Foundations of Computer Science, IEEE Comput. Soc. Press, Los Alamitos, CA, 2000, pp. 57--65. MR 1931804
Reference: [18] Kumar S.R., Raghavan P., Rajagopalan S., Tomkins A.: Trawling the web for emerging cyber-communities.Proceedings of the 8th WWW Conference, 1999, 403--416.
Reference: [19] Nešetřil J., Ossona de Mendez P.: Grad and classes with bounded expansion I. Decompositions.European J. Combin. 29 (2008), no. 3, 760--776. MR 2397335, 10.1016/j.ejc.2006.07.013
Reference: [20] Nešetřil J., Ossona de Mendez P.: Grad and classes with bounded expansion II. Algorithmic aspects.European J. Combin. 29 (2008), no. 3, 777--791. MR 2397336, 10.1016/j.ejc.2006.07.014
Reference: [21] Nešetřil J., Ossona de Mendez P.: Grad and classes with bounded expansion III. Restricted graph homomorphism dualities.European J. Combin. 29 (2008), no. 4, 1012--1024. MR 2408375, 10.1016/j.ejc.2007.11.019
Reference: [22] Nešetřil J., Ossona de Mendez P.: The grad of a graph and classes with bounded expansion.in 7th International Colloquium on Graph Theory (A. Raspaud and O. Delmas, Eds.), Electron. Notes Discrete Math. 22, Elsevier, 2005, pp. 101-106.
Reference: [23] Nešetřil J., Ossona de Mendez P.: Linear time low tree-width partitions and algorithmic consequences.Proceedings of the 38th Annual ACM Symposium on Theory of Computing, ACM, New York, 2006, pp. 391--400. MR 2277165
Reference: [24] Noh J.D.: Exact scaling properties of a hierarchical network model.Phys. Rev. E 67 (2003), 045103. 10.1103/PhysRevE.67.045103
Reference: [25] Ravasz E., Barabási A.-L.: Hierarchical organization in complex networks.Phys. Rev. E 67 (2003), 026112. 10.1103/PhysRevE.67.026112
Reference: [26] Zhang Z., Rong L., Comellas F., Fertin G.: High-dimensional Apollonian networks.J. Phys. A 39 (2006), 1811--1818. Zbl 1086.68017, MR 2209302, 10.1088/0305-4470/39/8/003
Reference: [27] Zhang Z., Rong L., Guo C.: A deterministic small-world network created by edge iterations.Phys. A 363 (2006), 567--572. 10.1016/j.physa.2005.08.020
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_50-2009-2_2.pdf 243.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo