Previous |  Up |  Next

Article

Title: Bias of LS estimators in nonlinear regression models with constraints. Part II: Biadditive models (English)
Author: Denis, Jean-Baptiste
Author: Pázman, Andrej
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 44
Issue: 5
Year: 1999
Pages: 375-403
Summary lang: English
.
Category: math
.
Summary: General results giving approximate bias for nonlinear models with constrained parameters are applied to bilinear models in anova framework, called biadditive models. Known results on the information matrix and the asymptotic variance matrix of the parameters are summarized, and the Jacobians and Hessians of the response and of the constraints are derived. These intermediate results are the basis for any subsequent second order study of the model. Despite the large number of parameters involved, bias formulæ turn out to be quite simple due to the orthogonal structure of the model. In particular, the response estimators are shown to be approximately unbiased. Some simulations assess the validity of the approximations. (English)
Keyword: asymptotic variance
Keyword: bilinear model
Keyword: nonlinear least squares
Keyword: response function
Keyword: second order approximation
MSC: 62F12
MSC: 62F30
MSC: 62J02
idZBL: Zbl 1060.62527
idMR: MR1709502
DOI: 10.1023/A:1023045028073
.
Date available: 2009-09-22T18:01:23Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/133892
.
Related article: http://dml.cz/handle/10338.dmlcz/133891
.
Reference: [CD91] J. Chadœuf and J.-B. Denis: Asymptotic variances for the multiplicative interaction model.Journal of Applied Statistics 18 (1991), 331–353. 10.1080/02664769100000032
Reference: [DG92] J.-B. Denis and J.C. Gower: Biadditive models.Technical report, Unité de biométrie, Versailles, 1992.
Reference: [DG94a] J.-B. Denis and J.C. Gower: Biadditive models.Biometrics 50 (1994), 310–311.
Reference: [DG94b] J.-B. Denis and J.C. Gower: Asymptotic covariances for the parameters of biadditive models.Utilitas Mathematica 46 (1994), 193–205. MR 1301307
Reference: [DG96] J.-B. Denis and J.C. Gower: Asymptotic confidence regions for biadditive models: interpreting genotype-environment interactions.Applied Statistics 45 (1996), 479–493. 10.2307/2986069
Reference: [DP98] J.-B. Denis and A. Pázman: Biadditive ANOVA models: reminders and asymptotical bias.Technical report n$^{\circ }$4, Unité de biométrie INRA, Versailles (1998).
Reference: [DM93] K.M.M. Dorkenoo and J.-R. Mathieu: Etude d’un modèle factoriel d’analyse de la variance comme modèle linéaire généralisé.Revue de Statistique Appliquée 41 (1993), 43–57. MR 1253515
Reference: [EY36] C. Eckart and G. Young: The approximation of one matrix by another of lower rank.Psychometrika 1 (1936), 211–219. 10.1007/BF02288367
Reference: [E96] F.A. vanEeuwijk: Between and beyond additivity and non-additivity; the statistical modelling of genotype by environment interaction in plant breeding.Thesis, Agricultural University, Wageningen, 1996.
Reference: [FM23] R.A. Fisher and W.A. Mackenzie: Studies in crop variation, II. The manurial response of different potato varieties.Journal of Agricultural Science XIII (1923), 311–320. 10.1017/S0021859600003592
Reference: [G92] H.D. Gauch: Statistical analysis of regional trials: AMMI analysis of factorial designs.Elsevier, Amsterdam, 1992.
Reference: [G63] N. Gilbert: Non-additive combining abilities.Genetical Research 4 (1963), 65–73. 10.1017/S0016672300003438
Reference: [G68] H.F. Gollob: A statistical model which combines features of factor analytic and analysis of variance techniques.Psychometrika 33 (1968), 73–115. Zbl 0167.48601, MR 0221658, 10.1007/BF02289676
Reference: [GH90] L.A. Goodman and S.J. Haberman: The analysis of non-additivity in two-way analysis of variance.Journal of the American Statistical Association 85 (1990), 139–145. MR 1137360, 10.1080/01621459.1990.10475317
Reference: [JG72] D.E. Johnson and F.A. Graybill: An analysis of a two-way model with interaction and no replication.Journal of the American Statistical Association 67 (1972), 862–868. MR 0400566, 10.1080/01621459.1972.10481307
Reference: [M71] J. Mandel: A new analysis of variance model for non-additive data.Technometrics 13 (1971), 1–18. Zbl 0216.48104, 10.1080/00401706.1971.10488751
Reference: [PD??] A. Pázman and J.-B. Denis: Bias of L.S. estimators in nonlinear regression models with constraints. Part I: the general case.Appl. Math. 44 (1999), 359–374. MR 1709501, 10.1023/A:1023092911235
Reference: [SC92] M.S. Seyedsadr and P.L. Cornelius: Shifted multiplicative models for nonadditive two way tables.Comm. Stat. B Simul. Comp. 21 (1992), 807–832. MR 1185174, 10.1080/03610919208813051
Reference: [S79] S.D. Silvey: Statistical Inference, 3rd edition.Chapman and Hall, London, 1979. MR 0500810
.

Files

Files Size Format View
AplMat_44-1999-5_3.pdf 515.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo