[2] C. A. Akemann, J. Anderson, G. K. Pedersen:
Approaching infinity in $C^\ast $-algebras. J. Operator Theory 21 (1989), 255–271.
MR 1023315
[5] J. Anderson:
Extensions, restrictions, and representations of states on $C^\ast $-algebras. Trans. Amer. Math. Soc. 249 (1979), 303–323.
MR 0525675 |
Zbl 0408.46049
[7] J. Anderson:
A maximal abelian subalgebra of the Calcin algebra with the extension property. Math. Scand. (1978), 101–110.
MR 0500149
[8] J. Anderson:
A conjecture concerning the pure states of $B(H)$ and related theorem. In Topics in modern operator theory (Timisoara/Herculane, 1980), Birkhäuser, Basel-Boston, Mass. (1981), 27–43.
MR 0672813
[10] J. Bunce:
Characters on singly generated $C^\ast $-algebras. Proc. Amer. Math. Soc. 25 (1970), 297–303.
MR 0259622 |
Zbl 0195.42006
[11] M. Floring, S. J. Summers:
On the statistical independence of algebras of observables. J. Math. Phys. 3 (1997), 1318–1328.
MR 1435671
[12] A. M. Gleason:
Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6 (1957), 885–893.
MR 0096113 |
Zbl 0078.28803
[14] J. Hamhalter:
Statistical independence of operator algebras. Ann. Inst. Henri Poincaré, 67 (1997), 447–462.
MR 1632248 |
Zbl 0893.46048
[16] H.-Olsen. Hanche, E. Stormer:
Jordan Operator Algebras. Pitman Publishing, Boston, London, Melbourne, 1984.
MR 0755003
[20] G. W. Mackey:
Mathematical Foundations of Quantum Mechanics. Benjamin, New York, 1963.
Zbl 0114.44002
[21] G. A. Raggio: States and composite systems in $W^\ast $-algebraic quantum mechanics. Diss. ETH, No. 6824, Zurich, 1981.
[22] H. Roos:
Independence of local algebras in quantum field theory. Commun. Math. Phys. 13 (1969), 216–225.
MR 0266539
[24] E. Stormer:
A characterization of pure states of $C^\ast $-algebras. Proc. Amer. Math. Soc. 19 (1968), 1100–1102.
MR 0232222
[25] S. J. Summers:
On the independence of local algebras in quantum field theory. Reviews in Mathematical Physics 2 (1990), 201–247.
MR 1090281 |
Zbl 0743.46079