[2] C. A. Akemann, J. Anderson, G. K. Pedersen: 
Approaching infinity in $C^\ast $-algebras. J. Operator Theory 21 (1989), 255–271. 
MR 1023315[5] J. Anderson: 
Extensions, restrictions, and representations of states on $C^\ast $-algebras. Trans. Amer. Math. Soc. 249 (1979), 303–323. 
MR 0525675 | 
Zbl 0408.46049[7] J. Anderson: 
A maximal abelian subalgebra of the Calcin algebra with the extension property. Math. Scand. (1978), 101–110. 
MR 0500149[8] J. Anderson: 
A conjecture concerning the pure states of $B(H)$ and related theorem. In Topics in modern operator theory (Timisoara/Herculane, 1980), Birkhäuser, Basel-Boston, Mass. (1981), 27–43. 
MR 0672813[10] J. Bunce: 
Characters on singly generated $C^\ast $-algebras. Proc. Amer. Math. Soc. 25 (1970), 297–303. 
MR 0259622 | 
Zbl 0195.42006[11] M. Floring, S. J. Summers: 
On the statistical independence of algebras of observables. J. Math. Phys. 3 (1997), 1318–1328. 
MR 1435671[12] A. M. Gleason: 
Measures on the closed subspaces of a Hilbert space. J. Math. Mech. 6 (1957), 885–893. 
MR 0096113 | 
Zbl 0078.28803[14] J. Hamhalter: 
Statistical independence of operator algebras. Ann. Inst. Henri Poincaré, 67 (1997), 447–462. 
MR 1632248 | 
Zbl 0893.46048[16] H.-Olsen. Hanche, E. Stormer: 
Jordan Operator Algebras. Pitman Publishing, Boston, London, Melbourne, 1984. 
MR 0755003[20] G. W. Mackey: 
Mathematical Foundations of Quantum Mechanics. Benjamin, New York, 1963. 
Zbl 0114.44002[21] G. A. Raggio: States and composite systems in $W^\ast $-algebraic quantum mechanics. Diss. ETH, No. 6824, Zurich, 1981.
[22] H. Roos: 
Independence of local algebras in quantum field theory. Commun. Math. Phys. 13 (1969), 216–225. 
MR 0266539[24] E. Stormer: 
A characterization of pure states of $C^\ast $-algebras. Proc. Amer. Math. Soc. 19 (1968), 1100–1102. 
MR 0232222[25] S. J. Summers: 
On the independence of local algebras in quantum field theory. Reviews in Mathematical Physics 2 (1990), 201–247. 
MR 1090281 | 
Zbl 0743.46079