Previous |  Up |  Next

Article

Title: On iterated limits of subsets of a convergence $\ell $-group (English)
Author: Jakubík, Ján
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 1
Year: 2001
Pages: 53-61
Summary lang: English
.
Category: math
.
Summary: In this paper we deal with the relation \[ \lim _\alpha \lim _\alpha X=\lim _\alpha X \] for a subset $X$ of $G$, where $G$ is an $\ell $-group and $\alpha $ is a sequential convergence on $G$. (English)
Keyword: convergence $\ell $-group
Keyword: disjoint subset
Keyword: direct product
Keyword: lexico extension
Keyword: sequential convergence
MSC: 06F15
MSC: 22C05
idZBL: Zbl 0978.06008
idMR: MR1826470
DOI: 10.21136/MB.2001.133921
.
Date available: 2009-09-24T21:47:11Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133921
.
Reference: [1] P. Conrad: The structure of a lattice ordered group with a finite number of disjoint elements.Michigan Math. J. 7 (1960), 171–180. Zbl 0103.01501, MR 0116059, 10.1307/mmj/1028998387
Reference: [2] P. Conrad: Lattice Ordered Groups.Lecture Notes, Tulane University, 1970. Zbl 0258.06011
Reference: [3] J. Jakubík: Direct decompositions of partially ordered groups, II.Czechoslovak Math. J. 11 (1961), 490–515. (Russian) MR 0137776
Reference: [4] J. Jakubík: Sequential convergences in $\ell $-groups without Urysohn’s axiom.Czechoslovak Math. J. 42 (1992), 101–116. MR 1152174
Reference: [5] J. Jakubík: Closed convex $\ell $-subgroups and radical classes of convergence $\ell $-groups.Math. Bohem. 122 (1997), 301–315. MR 1600660
Reference: [6] V. M. Kopytov, N. Ya. Medvedev: The Theory of Lattice Ordered Groups.Kluwer Academic Publishers, Dordrecht-Boston-London, 1994. MR 1369091
.

Files

Files Size Format View
MathBohem_126-2001-1_4.pdf 293.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo