Previous |  Up |  Next

Article

Title: Removability of singularities with anisotropic growth (English)
Author: Dont, Miroslav
Author: Král, Josef, Jr.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 128
Issue: 1
Year: 2003
Pages: 1-19
Summary lang: English
.
Category: math
.
Summary: With help of suitable anisotropic Minkowski’s contents and Hausdorff measures some results are obtained concerning removability of singularities for solutions of partial differential equations with anisotropic growth in the vicinity of the singular set. (English)
Keyword: solutions of partial differential equations
Keyword: removable singularities
Keyword: anisotropic metric
Keyword: Minkowski’s contents
MSC: 28A12
MSC: 35A20
MSC: 35B05
MSC: 35B60
MSC: 35J30
MSC: 65Z05
idZBL: Zbl 1015.35003
idMR: MR1973420
DOI: 10.21136/MB.2003.133932
.
Date available: 2009-09-24T22:06:18Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/133932
.
Reference: [1] S. Bochner: Weak solutions of linear partial differential equations.J. Math. Pures Appl. 35 (1956), 193–202. Zbl 0070.31502, MR 0081446
Reference: [2] M. de Guzmán: Differentitation of Integrals in $\mathbb{R}^n$.Springer, Berlin, 1975. MR 0457661
Reference: [3] S. Fučík, O. John, A. Kufner: Function Spaces I.SPN, Praha, 1974. (Czech)
Reference: [4] R. Harvey, J. Polking: Removable singularities of solutions of linear partial differential equations.Acta Mathematica 125 (1970), 39–56. MR 0279461, 10.1007/BF02838327
Reference: [5] P. Koskela: Removable singularities for analytic functions.Michigan Math. J. 40 (1993), 459–466. Zbl 0805.30001, MR 1236172, 10.1307/mmj/1029004831
Reference: [6] J. Král: Removability of singularities in potential theory.Potential Analysis 3 (1994), 119–131. MR 1266221, 10.1007/BF01047839
Reference: [7] J. Král, Jr.: Removable singularities for harmonic and caloric functions.Thesis, FJFI ČVUT, Praha, 1999. (Czech)
Reference: [8] W. Littman: Polar sets and removable singularities of partial differential equations.Ark. Mat. 7 (1967), 1–9. Zbl 0158.11004, MR 0224960, 10.1007/BF02591673
Reference: [9] O. Martio, M. Vuorinen: Whitney cubes, $p$-capacity and Minkowski content.Expo. Math. 5 (1987), 17–40. MR 0880256
Reference: [10] M. Píštěk: Removable singularities of solutions of partial differential equations.Thesis, MFF UK, Praha, 1993. (Czech)
Reference: [11] J. C. Polking: A survey of removable singularities.Seminar Nonlinear Partial Differential Equations, New York, 1987, pp. 261–292. MR 0765238
Reference: [12] M. Sugimoto, M. Uchida: A generalization of Bochner’s extension theorem and its application.Ark. Mat. 38 (2000), 399–409. MR 1785409, 10.1007/BF02384327
Reference: [13] N. N. Tarkhanov: The Analysis of Solutions of Elliptic Equations.Kluver Academic Publishers, 1997. Zbl 0877.35002, MR 1447439
Reference: [14] J. F. Trèves: Lectures on Linear Partial Differential Equations with Constant Coefficients.Rio de Janeiro, 1961. MR 0155078
Reference: [15] H. Zlonická: Singularity of solutions of partial differential equations.Thesis, MFF UK, Praha, 1984. (Czech)
.

Files

Files Size Format View
MathBohem_128-2003-1_1.pdf 386.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo