Article
Keywords:
multilattice; graph automorphism; direct factor
Summary:
In the present paper we generalize a result of a theorem of J. Jakubík concerning graph automorphisms of lattices to the case of multilattices of locally finite length.
References:
[2] M. Benado:
Les ensembles partiellement ordonnèes et le théorème de raffinement de Schreier, II. Théorie des multistructures. Czechoslovak Math. J. 5 (1955), 308–344.
MR 0076744
[3] J. Jakubík:
On isomorphisms of graphs of lattices. Czechoslovak Math. J. 35 (1985), 188–200.
MR 0787124
[6] J. Jakubík, M. Csontóová:
Convex isomorphisms of directed multilattices. Math. Bohem. 118 (1993), 359–379.
MR 1251882
[7] M. Tomková:
Graph isomorphisms of modular multilattices. Math. Slovaca 30 (1980), 95–100.
MR 0568218
[8] M. Tomková:
Graph isomorphisms of partially ordered sets. Math. Slovaca 37 (1987), 47–52.
MR 0899016
[9] C. Ratatonprasert, B. A. Davey:
Semimodular lattices with isomorphic graphs. Order 4 (1987), 1–13.
MR 0908432
[10] J. Jakubík:
Graph automorphisms of semimodular lattices. Math. Bohem. 125 (2000), 459–464.
MR 1802294
[11] M. Tomková:
On multilattices with isomorphic graphs. Math. Slovaca 32 (1982), 63–73.
MR 0648222
[12] J. Jakubík: On graph isomorphism of modular lattices. Czechoslovak Math. J. 4 (1954), 131–141.