[1] P. Billingsley: 
Probability and Measure. Third edition. John Wiley, Chichester, 1995. 
MR 1324786[7] B. R. Gelbaum: 
Modern Real and Complex Analysis. John Wiley, New York, 1995. 
MR 1325692[8] G. H. Hardy: 
Weierstrass’s non-differentiable function. Trans. Amer. Math. Soc. 17 (1916), 301–325. 
MR 1501044[9] P. Humke, G. Petruska: 
The packing dimension of a typical continuous function is 2. Real Anal. Exch. 14 (1988–89), 345–358. 
MR 0995975[11] S. V. Levizov: 
On the central limit theorem for series with respect to periodical multiplicative systems I. Acta Sci. Math. (Szeged) 55 (1991), 333–359. 
MR 1152596 | 
Zbl 0759.42018[12] S. V. Levizov: 
Weakly lacunary trigonometric series. Izv. Vyssh. Uchebn. Zaved. Mat. (1988), 28–35, 86–87. 
MR 0938430 | 
Zbl 0713.42011[13] N. N. Luzin: Sur les propriétés des fonctions mesurables. C. R. Acad. Sci. Paris 154 (1912), 1688–1690.
[14] P. Mattila: 
Geometry of Sets and Measures in Euclidean Spaces. Cambridge University Press, 1995. 
MR 1333890 | 
Zbl 0819.28004[15] P. Mattila: 
Tangent measures, densities, and singular integrals. Fractal geometry and stochastics (Finsterbergen, 1994), 43–52, Progr. Probab. 37, Birkhäuser, Basel, 1995. 
MR 1391970 | 
Zbl 0837.28006[17] D. Preiss: 
Geometry of measures in $\mathbb{R}^{n}$: distribution, rectifiability, and densities. Ann. Math., II. Ser. 125 (1987), 537–643. 
DOI 10.2307/1971410 | 
MR 0890162[18] D. Preiss, L. Zajíček: 
On Dini and approximate Dini derivates of typical continuous functions. Real Anal. Exch. 26 (2000/01), 401–412. 
MR 1825518[19] S. Saks: 
Theory of the Integral. Second Revised (ed.), Dover, New York, 1964. 
MR 0167578