[1] C. Bereanu, J. Mawhin: 
Existence and multiplicity results for periodic solutions of nonlinear difference equations. (to appear). 
MR 2243830[2] R. E. Gaines: 
Difference equations associated with boundary value problems for second order nonlinear ordinary differential equations. SIAM J. Numer. Anal. 11 (1974), 411–434. 
DOI 10.1137/0711035 | 
MR 0383757 | 
Zbl 0279.65068[3] J. Henderson, H. B. Thompson: 
Difference equations associated with fully nonlinear boundary value problems for second order ordinary differential equations. J. Differ. Equ. Appl. 7 (2001), 297–321. 
DOI 10.1080/10236190108808274 | 
MR 1923625[5] R. Chiappinelli, J. Mawhin, R. Nugari: 
Generalized Ambrosetti-Prodi conditions for nonlinear two-point boundary value problems. J. Differ. Equations 69 (1987), 422–434. 
DOI 10.1016/0022-0396(87)90127-6 | 
MR 0903395[7] M. Lees: 
A boundary value problem for nonlinear ordinary differential equations. J. Math. Mech. 10 (1961), 423–430. 
MR 0167672 | 
Zbl 0099.06902[8] M. Lees: 
Discrete methods for nonlinear two-point boundary value problems. Numerical Solutions of Partial Differential Equations, Bramble ed., Academic Press, New York, 1966, pp. 59–72. 
MR 0202323 | 
Zbl 0148.39206[9] M. Lees, M. H. Schultz: 
A Leray-Schauder principle for A-compact mappings and the numerical solution of non-linear two-point boundary value problems. Numerical Solutions of Nonlinear Differential Equations, Greenspan ed., Wiley, New York, 1966, pp. 167–179. 
MR 0209924[10] J. Mawhin: 
Topological Degree Methods in Nonlinear Boundary Value Problems. CBMS Series No. 40, American Math. Soc., Providence, 1979. 
MR 0525202 | 
Zbl 0414.34025[11] J. Mawhin: 
Boundary value problems with nonlinearities having infinite jumps. Comment. Math. Univ. Carol. 25 (1984), 401–414. 
MR 0775560 | 
Zbl 0562.34010[12] J. Mawhin: 
Points fixes, points critiques et problèmes aux limites. Sémin. Math. Sup. No. 92, Presses Univ. Montréal, Montréal (1985). 
MR 0789982 | 
Zbl 0561.34001[13] J. Mawhin: 
Ambrosetti-Prodi type results in nonlinear boundary value problems. Differential equations and mathematical physics. Lect. Notes in Math. 1285, Springer, Berlin, 1987, pp. 290–313. 
MR 0921281 | 
Zbl 0651.34014[14] J. Mawhin: 
A simple approach to Brouwer degree based on differential forms. Advanced Nonlinear Studies 4 (2004), 535–548. 
MR 2100911 | 
Zbl 1082.47052[15] J. Mawhin, H. B. Thompson, E. Tonkes: 
Uniqueness for boundary value problems for second order finite difference equations. J. Differ. Equations Appl. 10 (2004), 749–757. 
DOI 10.1080/10236190410001710301 | 
MR 2069640