Previous |  Up |  Next

Article

Title: Coordinate description of analytic relations (English)
Author: Neuman, František
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 131
Issue: 2
Year: 2006
Pages: 197-210
Summary lang: English
.
Category: math
.
Summary: In this paper we present an algebraic approach that describes the structure of analytic objects in a unified manner in the case when their transformations satisfy certain conditions of categorical character. We demonstrate this approach on examples of functional, differential, and functional differential equations. (English)
Keyword: canonical form
Keyword: Brandt groupoid
Keyword: Ehresmann groupoid
Keyword: transformation
Keyword: differential equation
Keyword: Abel functional equation
Keyword: functional differential equation
MSC: 20L05
MSC: 34A30
MSC: 34C20
MSC: 34K05
MSC: 39B22
MSC: 39B72
idZBL: Zbl 1116.34006
idMR: MR2242845
DOI: 10.21136/MB.2006.134091
.
Date available: 2009-09-24T22:25:41Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134091
.
Reference: [1] E. Barvínek: O rozložení nulových bodů řešení lineární diferenciální rovnice $y^{\prime \prime }=Q(t)y$ a jejich derivací.Acta F. R. N. Univ. Comenian 5 (1961), 465–474.
Reference: [2] O. Borůvka: Linear Differential Transformations of the Second Order.The English Univ. Press, London, 1971. MR 0463539
Reference: [3] B. Choczewski: On differentiable solutions of a functional equation.Ann. Polon. Math. 13 (1963), 133–138. MR 0153998, 10.4064/ap-13-2-133-138
Reference: [4] A. R. Forsyth: Invariants, covariants and quotient-derivatives associated with linear differential equations.Philos. Trans. Roy. Soc. London Ser. A 179 (1899), 377–489.
Reference: [5] M. Hasse, L. Michler: Theorie der Kategorien.VEB, Berlin, 1966. MR 0213411
Reference: [6] M. Kuczma: Functional Equations in a Single Variable.PWN, 1968. Zbl 0196.16403, MR 0228862
Reference: [7] M. Kuczma, B. Choczewski, R. Ger: Iterative Functional Equations.Cambridge Univ. Press, Cambridge, 1989. MR 1067720
Reference: [8] E. E. Kummer: De generali quadam aequatione differentiali tertii ordinis (Progr. Evang. Königl. Stadtgymnasium Liegnitz 1834).J. Reine Angew. Math. (reprinted) 100 (1887), 1–10.
Reference: [9] E. Laguerre: Sur les équations differérentielles linéaires du troisième ordre.C. R. Acad. Sci. Paris 88 (1879), 116–118.
Reference: [10] F. Neuman: Geometrical approach to linear differential equations of the $n$-th order.Rend. Mat. 5 (1972), 579–602. Zbl 0257.34029, MR 0324141
Reference: [11] F. Neuman: Simultaneous solutions of a system of Abel equations and differential equations with several deviations.Czechoslovak Math. J. 32 (1982), 488–494. Zbl 0524.34070, MR 0669790
Reference: [12] F. Neuman: Criterion of global equivalence of linear differential equations.Proc. Roy. Soc. Edinburgh 97 A (1984), 217–221. Zbl 0552.34009, MR 0751194
Reference: [13] F. Neuman: On Halphen and Laguerre-Forsyth canonical forms for linear differential equations.Archivum Math. (Brno) 26 (1990), 147–154. MR 1188274
Reference: [14] F. Neuman: Transformations and canonical forms of functional-differential equations.Proc. Roy. Soc. Edinburgh 115 A (1990), 349–357. MR 1069527
Reference: [15] F. Neuman: On a canonical parametrization of continuous functions.Opuscula Mathematica (Kraków) 6 (1990), 185–191. Zbl 0779.39002, MR 1120254
Reference: [16] F. Neuman: Global Properties of Linear Ordinary Differential Equations.Mathematics and Its Applications (East European Series) 52, Kluwer Acad. Publ., Dordrecht, 1991. Zbl 0784.34009, MR 1192133
Reference: [17] F. Neuman: On equivalence of linear functional-differential equations.Results in Mathematics 26 (1994), 354–359. Zbl 0829.34054, MR 1300618, 10.1007/BF03323059
Reference: [18] F. Neuman: Algebraic aspects of transformations with an application to differential equations.Nonlinear Anal. 40 (2000), 505–511. Zbl 0957.34008, MR 1768906, 10.1016/S0362-546X(00)85029-4
Reference: [19] F. Neuman: A general construction of linear differential equations with solutions of prescribed properties.Applied Math. Letters 17 (2004), 71–76. Zbl 1054.34018, MR 2030653, 10.1016/S0893-9659(04)90014-6
Reference: [20] F. Neuman: Smooth and discrete systems—algebraic, analytic, and geometrical representations.Adv. Difference Equ. 2 (2004), 111–120. Zbl 1077.34008, MR 2064086
Reference: [21] F. Neuman: Constructing and solving equations—inverse operations.Aequationes Math. 70 (2005), 77–87. Zbl 1086.34006, MR 2167986, 10.1007/s00010-005-2788-4
Reference: [22] E. J. Wilczynski: Projective Differential Geometry of Curves and Ruled Surfaces.Teubner, Leipzig, 1906.
.

Files

Files Size Format View
MathBohem_131-2006-2_6.pdf 349.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo