Title:
|
On holomorphic continuation of functions along boundary sections (English) |
Author:
|
Imomkulov, S. A. |
Author:
|
Khujamov, J. U. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
3 |
Year:
|
2005 |
Pages:
|
309-322 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $D^{\prime } \subset \mathbb{C}^{n-1}$ be a bounded domain of Lyapunov and $f(z^{\prime },z_n)$ a holomorphic function in the cylinder $D=D^{\prime }\times U_n$ and continuous on $\bar{D}$. If for each fixed $a^{\prime }$ in some set $E\subset \partial D^{\prime }$, with positive Lebesgue measure $\text{mes}\,E>0$, the function $f(a^{\prime },z_n)$ of $z_n$ can be continued to a function holomorphic on the whole plane with the exception of some finite number (polar set) of singularities, then $f(z^{\prime },z_n)$ can be holomorphically continued to $(D^{\prime }\times \mathbb{C})\setminus S$, where $S$ is some analytic (closed pluripolar) subset of $D^{\prime }\times \mathbb{C}$. (English) |
Keyword:
|
holomorphic function |
Keyword:
|
holomorphic continuation |
Keyword:
|
pluripolar set |
Keyword:
|
pseudoconcave set |
Keyword:
|
Jacobi-Hartogs series |
MSC:
|
32D15 |
MSC:
|
46G20 |
idZBL:
|
Zbl 1113.46038 |
idMR:
|
MR2164660 |
DOI:
|
10.21136/MB.2005.134101 |
. |
Date available:
|
2009-09-24T22:21:35Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134101 |
. |
Reference:
|
[1] Bedford E., Taylor B. A.: A new capacity for plurisubharmonic functions.Acta. Math. 149 (1982), 1–40. MR 0674165, 10.1007/BF02392348 |
Reference:
|
[2] Gonchar A. A.: A local condition for single-valuedness of analytic functions.Math. USSR Sb. 89 (1972), 148–164. (Russian) MR 0322144 |
Reference:
|
[3] Hartogs F.: Zur Theorie der analytischen Funktionen mehrerer unabhängiger Veränderlichen, insbesondere über die Darstellung derselben durch Reihen, welche nach Potenzen einer Veränderlichen fortschreiben.Math. Ann. 62 (1906), 1–88. MR 1511365, 10.1007/BF01448415 |
Reference:
|
[4] Kazaryan M. V.: On holomorphic continuation of functions with special singularities in ${n}$.Akad. Nauk Armyan. SSR Dokl. 76 (1983), 13–17. (Russian) MR 0704694 |
Reference:
|
[5] Oka K.: Note sur les familles des fonctions analytiques multiformes ets.J. Sci. Hiroshima Univ., Ser. A 4 (1934), 93–98. 10.32917/hmj/1558749763 |
Reference:
|
[6] Privalov I. I., Kuznetsov P. I.: Boundary problems and various classes of harmonic and subharmonic functions defined in arbitrary domains.Math. USSR Sb. 6 (1939), 345–375. (Russian) |
Reference:
|
[7] Rothstein W.: Ein neuer Beweis des Hartogsschen Hauptsatzes und seine Ausdehnung auf meromorphe Functionen.Math. Z. 53 (1950), 84–95. MR 0037365, 10.1007/BF01175583 |
Reference:
|
[8] Sadullaev A. S.: Rational approximations and pluripolar sets.Math. USSR Sb. 119 (1982), 96–118. Zbl 0511.32011, MR 0672412 |
Reference:
|
[9] Sadullaev A. S.: A criterion for rapid rational approximation in ${n}$.Math. USSR Sb. 125 (1984), 269–279. (Russian) MR 0764481 |
Reference:
|
[10] Sadullaev A. S., Chirka E. M.: On continuation of functions with polar singularities.Mat. Sb., N. Ser. 132 (1987), 383–390. (Russian) MR 0889599 |
Reference:
|
[11] Shabat B. V.: Introduction to the complex analysis. Part II.Nauka, Moskva, 1985. (Russian) MR 0831938 |
Reference:
|
[12] Slodkowski Z.: On subharmonicity of the capacity of the spectrum.Proc. Amer. Math. Soc. 81 (1981), 243–249. Zbl 0407.46046, MR 0593466, 10.1090/S0002-9939-1981-0593466-6 |
Reference:
|
[13] Tuychiev T. T.: Continuation of functions along a fixed direction.Sibir. Math. Journal 229 (1988), 142–147. (Russian) |
. |