Title:
|
Essential norms of the Neumann operator of the arithmetical mean (English) |
Author:
|
Král, Josef |
Author:
|
Medková, Dagmar |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
126 |
Issue:
|
4 |
Year:
|
2001 |
Pages:
|
669-690 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $K\subset \mathbb{R}^m$ ($m\ge 2$) be a compact set; assume that each ball centered on the boundary $B$ of $K$ meets $K$ in a set of positive Lebesgue measure. Let ${C}_0^{(1)}$ be the class of all continuously differentiable real-valued functions with compact support in $\mathbb{R}^m$ and denote by $\sigma _m$ the area of the unit sphere in $\mathbb{R}^m$. With each $\varphi \in {C}_0^{(1)}$ we associate the function \[ W_K\varphi (z)={1\over \sigma _m}\underset{\mathbb{R}^m \setminus K}{\rightarrow }\int \mathop {\mathrm grad}\nolimits \varphi (x)\cdot {z-x\over |z-x|^m}\ x \] of the variable $z\in K$ (which is continuous in $K$ and harmonic in $K\setminus B$). $W_K\varphi $ depends only on the restriction $\varphi |_B$ of $\varphi $ to the boundary $B$ of $K$. This gives rise to a linear operator $W_K$ acting from the space ${C}^{(1)}(B)=\lbrace \varphi |_B; \varphi \in {C}_0^{(1)}\rbrace $ to the space ${C}(B)$ of all continuous functions on $B$. The operator ${T}_K$ sending each $f\in {C}^{(1)}(B)$ to ${T}_Kf=2W_Kf-f \in {C}(B)$ is called the Neumann operator of the arithmetical mean; it plays a significant role in connection with boundary value problems for harmonic functions. If $p$ is a norm on ${C}(B)\supset {C}^{(1)}(B)$ inducing the topology of uniform convergence and $G$ is the space of all compact linear operators acting on ${C}(B)$, then the associated $p$-essential norm of ${T}_K$ is given by \[ \omega _p {T}_K=\underset{Q\in {G}}{\rightarrow }\inf \sup \bigl \lbrace p[({T}_K-Q)f]; \ f\in {C}^{(1)}(B), \ p(f)\le 1\bigr \rbrace . \] In the present paper estimates (from above and from below) of $\omega _p {T}_K$ are obtained resulting in precise evaluation of $\omega _p {T}_K$ in geometric terms connected only with $K$. (English) |
Keyword:
|
double layer potential |
Keyword:
|
Neumann’s operator of the arithmetical mean |
Keyword:
|
essential norm |
MSC:
|
31B10 |
MSC:
|
45P05 |
MSC:
|
47A30 |
MSC:
|
47G10 |
idZBL:
|
Zbl 0998.31003 |
idMR:
|
MR1869461 |
DOI:
|
10.21136/MB.2001.134114 |
. |
Date available:
|
2009-09-24T21:55:56Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134114 |
. |
Reference:
|
[1] T. S. Angell, R. E. Kleinman, J. Král: Layer potentials on boundaries with corners and edges.Čas. Pěst. Mat. 113 (1988), 387–402. MR 0981880 |
Reference:
|
[2] M. Balavadze, I. Kiguradze, V. Kokilashvili (eds.): Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili.Tbilisi, 1991. |
Reference:
|
[3] Yu. D. Burago, V. G. Maz’ ya: Potential theory and function theory for irregular regions.Zapiski Naučnyh Seminarov LOMI 3 (1967), 1–152. (Russian) |
Reference:
|
[4] M. Chlebík: Tricomi potentials. Thesis.Mathematical Institute of the Czechoslovak Academy of Sciences. Praha, 1988. (Slovak) |
Reference:
|
[5] H. Federer: Geometric Measure Theory.Springer, Berlin, 1969. Zbl 0176.00801, MR 0257325 |
Reference:
|
[6] H. Federer: The Gauss-Green theorem.Trans. Amer. Math. Soc. 58 (1945), 44–76. Zbl 0060.14102, MR 0013786, 10.1090/S0002-9947-1945-0013786-6 |
Reference:
|
[7] I. Gohberg, A. Marcus: Some remarks on topologically equivalent norms.Izvestija Mold. Fil. Akad. Nauk SSSR 10 (1960), 91–95. (Russian) |
Reference:
|
[8] J. Král: The Fredholm method in potential theory.Trans. Amer. Math. Soc. 125 (1966), 511–547. MR 0209503, 10.1090/S0002-9947-1966-0209503-0 |
Reference:
|
[9] J. Král: Integral Operators in Potential Theory. Lecture Notes in Mathematics 823.Springer, Berlin, 1980. MR 0590244 |
Reference:
|
[10] J. Král: The Fredholm-Radon method in potential theory.Continuum Mechanics and Related Problems of Analysis. Proceedings of the Internat. Symposium Dedicated to the Centenary of Academician N. Muskhelishvili, Tbilisi, 1991, pp. 390–397. MR 1379845 |
Reference:
|
[11] J. Král, D. Medková: Angular limits of double layer potentials.Czechoslovak Math. J. 45 (1995), 267–291. MR 1331464 |
Reference:
|
[12] J. Král, D. Medková: Essential norms of a potential theoretic boundary integral operator in $L^1$.Math. Bohem. 123 (1998), 419–436. MR 1667114 |
Reference:
|
[13] J. Král, W. L. Wendland: Some examples concerning applicability of the Fredholm -Radon method in potential theory.Aplikace matematiky 31 (1986), 293–308. MR 0854323 |
Reference:
|
[14] J. Lukeš, J. Malý: Measure and Integral.Matfyzpress, 1994. MR 2316454 |
Reference:
|
[15] V. G Maz’ya: Boundary Integral Equations. Encyclopaedia of Mathematical Sciences vol. 27, Analysis IV.Springer, 1991. 10.1007/978-3-642-58175-5_2 |
Reference:
|
[16] L. C. Young: A theory of boundary values.Proc. London Math. Soc. 14A (1965), 300–314. Zbl 0147.07802, MR 0180891 |
Reference:
|
[17] W. P. Ziemer: Weakly Differentiable Functions.Springer, 1989. Zbl 0692.46022, MR 1014685 |
. |