Previous |  Up |  Next

Article

Title: $I$ and $I^*$-convergence in topological spaces (English)
Author: Lahiri, B. K.
Author: Das, Pratulananda
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 2
Year: 2005
Pages: 153-160
Summary lang: English
.
Category: math
.
Summary: We extend the idea of $I$-convergence and $I^*$-convergence of sequences to a topological space and derive several basic properties of these concepts in the topological space. (English)
Keyword: $I$-convergence
Keyword: $I^*$-convergence
Keyword: condition (AP)
Keyword: $I$-limit point
Keyword: $I$-cluster point
MSC: 40A05
MSC: 40A30
MSC: 40A99
MSC: 54A20
idZBL: Zbl 1111.40001
idMR: MR2148648
DOI: 10.21136/MB.2005.134133
.
Date available: 2009-09-24T22:19:27Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134133
.
Reference: [1] Baláž, V., Červeňanský, J., Kostyrko, P., Šalát, T.: $I$-convergence and $I$-continuity of real functions.Faculty of Natural Sciences, Constantine the Philosoper University, Nitra, Acta Mathematica 5, 43–50.
Reference: [2] Connor, J. S.: The statistical and strong $p$-Cesaro convergence of sequences.Analysis 8 (1988), 47–63. Zbl 0653.40001, MR 0954458, 10.1524/anly.1988.8.12.47
Reference: [3] Demirci, K.: $I$-limit superior and limit inferior.Math. Commun. 6 (2001), 165–172. Zbl 0992.40002, MR 1908336
Reference: [4] Fast, H.: Sur la convergence statistique.Colloq. Math. 2 (1951), 241–244. Zbl 0044.33605, MR 0048548, 10.4064/cm-2-3-4-241-244
Reference: [5] Halberstem, H., Roth, K. F.: Sequences.Springer, New York, 1993.
Reference: [6] Kostyrko, P., Šalát, T., Wilczyński, W.: $I$-convergence.Real Analysis Exch. 26 (2000/2001), 669–685. MR 1844385, 10.2307/44154069
Reference: [7] Kostyrko, P., Mačaj, M., Šalát, T., Sleziak, M.: $I$-convergence and a termal $I$-limit points.(to appear).
Reference: [8] Kuratowski, K.: Topologie I.PWN, Warszawa, 1962.
Reference: [9] Lahiri, B. K., Das, Pratulananda: Further results on $I$-limit superior and $I$-limit inferior.Math. Commun. 8 (2003), 151–156. MR 2026393
Reference: [10] Mačaj M., Šalát, T.: Statistical convergence of subsequences of a given sequence.Math. Bohem. 126 (2001), 191–208. MR 1826482
Reference: [11] Niven, I., Zuckerman, H. S.: An introduction to the theory of numbers.4th ed., John Wiley, New York, 1980. MR 0572268
Reference: [12] Šalát, T.: On statistically convergent sequences of real numbers.Math. Slovaca 30 (1980), 139–150. MR 0587239
Reference: [13] Šalát, T., Tripathy, B. C., Ziman, M.: A note on $I$-convergence field.(to appear). MR 2203460
Reference: [14] Schoenberg, I. J.: The integrability of certain function and related summability methods.Am. Math. Mon. 66 (1959), 361–375. MR 0104946, 10.2307/2308747
.

Files

Files Size Format View
MathBohem_130-2005-2_3.pdf 314.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo