Title:
|
Generalized $F$-semigroups (English) |
Author:
|
Giraldes, E. |
Author:
|
Marques-Smith, P. |
Author:
|
Mitsch, H. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
130 |
Issue:
|
2 |
Year:
|
2005 |
Pages:
|
203-220 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A semigroup $S$ is called a generalized $F$-semigroup if there exists a group congruence on $S$ such that the identity class contains a greatest element with respect to the natural partial order $\le _{S}$ of $S$. Using the concept of an anticone, all partially ordered groups which are epimorphic images of a semigroup $(S,\cdot ,\le _{S})$ are determined. It is shown that a semigroup $S$ is a generalized $F$-semigroup if and only if $S$ contains an anticone, which is a principal order ideal of $(S,\le _{S})$. Also a characterization by means of the structure of the set of idempotents or by the existence of a particular element in $S$ is given. The generalized $F$-semigroups in the following classes are described: monoids, semigroups with zero, trivially ordered semigroups, regular semigroups, bands, inverse semigroups, Clifford semigroups, inflations of semigroups, and strong semilattices of monoids. (English) |
Keyword:
|
semigroup |
Keyword:
|
natural partial order |
Keyword:
|
group congruence |
Keyword:
|
anticone |
Keyword:
|
pivot elements |
Keyword:
|
partially ordered groups |
Keyword:
|
principal order ideals |
MSC:
|
06F15 |
MSC:
|
20M10 |
idZBL:
|
Zbl 1111.20050 |
idMR:
|
MR2148653 |
DOI:
|
10.21136/MB.2005.134136 |
. |
Date available:
|
2009-09-24T22:20:12Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134136 |
. |
Reference:
|
[1] J. Almeida, J. E. Pin, P. Weil: Semigroups whose idempotents form a subsemigroup.Math. Proc. Camb. Phil. Soc. 111 (1992), 241–253. MR 1142743, 10.1017/S0305004100075332 |
Reference:
|
[2] A. Bigard: Sur les images homomorphes d’un demi-groupe ordonné.C. R. Acad. Sci. Paris 260 (1965), 5987–5988. Zbl 0132.01202, MR 0178080 |
Reference:
|
[3] T. Blyth: On the greatest isotone homomorphic group image of an inverse semigroup.J. London Math. Soc. 1 (1969), 260–264. Zbl 0181.32001, MR 0245705 |
Reference:
|
[4] T. Blyth, M. Janowitz: Residuation Theory.Pergamon Press, Oxford, U.K., 1972. MR 0396359 |
Reference:
|
[5] A. Clifford, G. Preston: The Algebraic Theory of Semigroups, Vols. I, II.Amer. Math. Soc. Surveys 7, Providence, USA, 1961/67. MR 0132791 |
Reference:
|
[6] M. Dubreil-Jacotin: Sur les images homomorphes d’un demi-groupe ordonné.Bull. Soc. Math. France 92 (1964), 101–115. Zbl 0129.01502, MR 0168675 |
Reference:
|
[7] A. Fidalgo Maia, H. Mitsch: Constructions of trivially ordered semigroups.Pure Math. Appl. 13 (2002), 359–371. MR 1980722 |
Reference:
|
[8] E. Giraldes, P. Marques-Smith, H. Mitsch: $F$-regular semigroups.J. Algebra 274 (2004), 491–510. MR 2043359, 10.1016/j.jalgebra.2003.09.050 |
Reference:
|
[9] J. Howie: An Introduction to Semigroup Theory.Academic Press, London, U.K., 1976. Zbl 0355.20056, MR 0466355 |
Reference:
|
[10] M. Lawson: Inverse Semigroups.World Scientific, Singapore, 1998. Zbl 1079.20505, MR 1694900 |
Reference:
|
[11] D. McAlister: Groups, semilattices and inverse semigroups II.Trans. Amer. Math. Soc. 196 (1974), 351–370. Zbl 0297.20072, MR 0357660, 10.1090/S0002-9947-74-99950-4 |
Reference:
|
[12] R. McFadden, L. O’Carroll: $F$-inverse semigroups.Proc. Lond. Math. Soc., III. Ser. 22 (1971), 652–666. MR 0292978 |
Reference:
|
[13] H. Mitsch: A natural partial order for semigroups.Proc. Amer. Math. Soc. 97 (1986), 384–388. Zbl 0596.06015, MR 0840614, 10.1090/S0002-9939-1986-0840614-0 |
Reference:
|
[14] H. Mitsch: Subdirect products of $E$-inversive semigroups.J. Austral. Math. Soc. 48 (1990), 66–78. Zbl 0691.20050, MR 1026837, 10.1017/S1446788700035199 |
Reference:
|
[15] H. Mitsch: Semigroups and their natural order.Math. Slovaca 44 (1994), 445–462. Zbl 0816.20057, MR 1301953 |
Reference:
|
[16] M. Petrich: Inverse Semigroups.J. Wiley, New York, 1984. Zbl 0546.20053, MR 0752899 |
Reference:
|
[17] J. Querré: Plus grand groupe image homomorphe et isotone d’un monoide ordonné.Acta Math. Acad. Sci. Hung. 19 (1968), 129–146. MR 0227299, 10.1007/BF01894689 |
Reference:
|
[18] S. Reither: Die natürliche Ordnung auf Halbgruppen.University of Vienna, PhD-Thesis (1994). |
Reference:
|
[19] V. Wagner: Generalized grouds and generalized groups with the transitive compatibility relation.Uchenye Zapiski, Mechano-Math. Series, Saratov State University 70 (1961), 25–39. |
. |