Previous |  Up |  Next

Article

Title: Generalized $F$-semigroups (English)
Author: Giraldes, E.
Author: Marques-Smith, P.
Author: Mitsch, H.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 2
Year: 2005
Pages: 203-220
Summary lang: English
.
Category: math
.
Summary: A semigroup $S$ is called a generalized $F$-semigroup if there exists a group congruence on $S$ such that the identity class contains a greatest element with respect to the natural partial order $\le _{S}$ of $S$. Using the concept of an anticone, all partially ordered groups which are epimorphic images of a semigroup $(S,\cdot ,\le _{S})$ are determined. It is shown that a semigroup $S$ is a generalized $F$-semigroup if and only if $S$ contains an anticone, which is a principal order ideal of $(S,\le _{S})$. Also a characterization by means of the structure of the set of idempotents or by the existence of a particular element in $S$ is given. The generalized $F$-semigroups in the following classes are described: monoids, semigroups with zero, trivially ordered semigroups, regular semigroups, bands, inverse semigroups, Clifford semigroups, inflations of semigroups, and strong semilattices of monoids. (English)
Keyword: semigroup
Keyword: natural partial order
Keyword: group congruence
Keyword: anticone
Keyword: pivot elements
Keyword: partially ordered groups
Keyword: principal order ideals
MSC: 06F15
MSC: 20M10
idZBL: Zbl 1111.20050
idMR: MR2148653
DOI: 10.21136/MB.2005.134136
.
Date available: 2009-09-24T22:20:12Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134136
.
Reference: [1] J. Almeida, J. E. Pin, P. Weil: Semigroups whose idempotents form a subsemigroup.Math. Proc. Camb. Phil. Soc. 111 (1992), 241–253. MR 1142743, 10.1017/S0305004100075332
Reference: [2] A. Bigard: Sur les images homomorphes d’un demi-groupe ordonné.C. R. Acad. Sci. Paris 260 (1965), 5987–5988. Zbl 0132.01202, MR 0178080
Reference: [3] T. Blyth: On the greatest isotone homomorphic group image of an inverse semigroup.J. London Math. Soc. 1 (1969), 260–264. Zbl 0181.32001, MR 0245705
Reference: [4] T. Blyth, M. Janowitz: Residuation Theory.Pergamon Press, Oxford, U.K., 1972. MR 0396359
Reference: [5] A. Clifford, G. Preston: The Algebraic Theory of Semigroups, Vols. I, II.Amer. Math. Soc. Surveys 7, Providence, USA, 1961/67. MR 0132791
Reference: [6] M. Dubreil-Jacotin: Sur les images homomorphes d’un demi-groupe ordonné.Bull. Soc. Math. France 92 (1964), 101–115. Zbl 0129.01502, MR 0168675
Reference: [7] A. Fidalgo Maia, H. Mitsch: Constructions of trivially ordered semigroups.Pure Math. Appl. 13 (2002), 359–371. MR 1980722
Reference: [8] E. Giraldes, P. Marques-Smith, H. Mitsch: $F$-regular semigroups.J. Algebra 274 (2004), 491–510. MR 2043359, 10.1016/j.jalgebra.2003.09.050
Reference: [9] J. Howie: An Introduction to Semigroup Theory.Academic Press, London, U.K., 1976. Zbl 0355.20056, MR 0466355
Reference: [10] M. Lawson: Inverse Semigroups.World Scientific, Singapore, 1998. Zbl 1079.20505, MR 1694900
Reference: [11] D. McAlister: Groups, semilattices and inverse semigroups II.Trans. Amer. Math. Soc. 196 (1974), 351–370. Zbl 0297.20072, MR 0357660, 10.1090/S0002-9947-74-99950-4
Reference: [12] R. McFadden, L. O’Carroll: $F$-inverse semigroups.Proc. Lond. Math. Soc., III. Ser. 22 (1971), 652–666. MR 0292978
Reference: [13] H. Mitsch: A natural partial order for semigroups.Proc. Amer. Math. Soc. 97 (1986), 384–388. Zbl 0596.06015, MR 0840614, 10.1090/S0002-9939-1986-0840614-0
Reference: [14] H. Mitsch: Subdirect products of $E$-inversive semigroups.J. Austral. Math. Soc. 48 (1990), 66–78. Zbl 0691.20050, MR 1026837, 10.1017/S1446788700035199
Reference: [15] H. Mitsch: Semigroups and their natural order.Math. Slovaca 44 (1994), 445–462. Zbl 0816.20057, MR 1301953
Reference: [16] M. Petrich: Inverse Semigroups.J. Wiley, New York, 1984. Zbl 0546.20053, MR 0752899
Reference: [17] J. Querré: Plus grand groupe image homomorphe et isotone d’un monoide ordonné.Acta Math. Acad. Sci. Hung. 19 (1968), 129–146. MR 0227299, 10.1007/BF01894689
Reference: [18] S. Reither: Die natürliche Ordnung auf Halbgruppen.University of Vienna, PhD-Thesis (1994).
Reference: [19] V. Wagner: Generalized grouds and generalized groups with the transitive compatibility relation.Uchenye Zapiski, Mechano-Math. Series, Saratov State University 70 (1961), 25–39.
.

Files

Files Size Format View
MathBohem_130-2005-2_8.pdf 368.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo