[1] A. V. Babin, M. I. Vishik:
Attractors of Evolution Equations. North-Holland, Amsterdam, 1992.
MR 1156492
[2] P. Brunovský, X. Mora, P. Poláčik, J. Solà-Morales:
Asymptotic behavior of solutions of semilinear elliptic equations on an unbounded strip. Acta Math. Univ. Comenian. (N.S.) 60 (1991), 163–183.
MR 1155242
[3] P. Brunovský, P. Poláčik, B. Sandstede:
Convergence in general periodic parabolic equations in one space dimension. Nonlinear Anal. 18 (1992), 209–215.
MR 1148285
[4] A. Calsina, X. Mora, J. Solà-Morales:
The dynamical approach to elliptic problems in cylindrical domains, and a study of their parabolic singular limit. J. Differ. Equations 102 (1993), 244–304.
DOI 10.1006/jdeq.1993.1030 |
MR 1216730
[6] X.-Y. Chen, H. Matano:
Convergence, asymptotic periodicity, and finite-point blow-up in one-dimensional semilinear heat equations. J. Differ. Equations 78 (1989), 160–190.
DOI 10.1016/0022-0396(89)90081-8 |
MR 0986159
[7] X.-Y. Chen, P. Poláčik:
Asymptotic periodicity of positive solutions of reaction diffusion equations on a ball. J. Reine Angew. Math. 472 (1996), 17–51.
MR 1384905
[8] E. Feireisl, P. Poláčik:
Structure of periodic solutions and asymptotic behavior for time-periodic reaction-diffusion equations on R. Adv. Differ. Equations 5 (2000), 583–622.
MR 1750112
[10] J. K. Hale:
Asymptotic Behavior of Dissipative Systems. American Mathematical Society, Providence, RI, 1988.
MR 0941371 |
Zbl 0642.58013
[11] J. K. Hale, G. Raugel:
Convergence in gradient-like systems with applications to PDE. J. Applied Math. Physics (ZAMP) 43 (1992), 63–124.
DOI 10.1007/BF00944741 |
MR 1149371
[12] A. Haraux, M. A. Jendoubi:
Convergence of solutions of second-order gradient-like systems with analytic nonlinearities. J. Differ. Equations 144 (1998), 313–320.
DOI 10.1006/jdeq.1997.3393 |
MR 1616968
[13] A. Haraux, P. Poláčik:
Convergence to a positive equilibrium for some nonlinear evolution equations in a ball. Acta Math. Univ. Comenian. (N.S.) 61 (1992), 129–141.
MR 1205867
[16] M. A. Jendoubi, P. Poláčik: Nonstabilizing solutions of semilinear hyperbolic and elliptic equations with damping. Preprint.
[19] A. Mielke:
Hamiltonian and Lagrangian Flows on Center Manifolds with Applications to Elliptic Variational Problems. Springer, Berlin, 1991.
MR 1165943 |
Zbl 0747.58001
[21] J. Palis, W. de Melo:
Geometric Theory of Dynamical Systems. Springer, New York, 1982.
MR 0669541
[22] P. Poláčik: Parabolic equations: asymptotic behavior and dynamics on invariant manifolds. Handbook on Dynamical Systems III: Towards Applications. Elsevier, B. Fiedler (ed.), to appear.
[23] M. A. Jendoubi, P. Poláčik: Nonstabilizing solutions of semilinear hyperbolic and elliptic equations with damping.
[24] P. Poláčik, K. P. Rybakowski:
Nonconvergent bounded trajectories in semilinear heat equations. J. Differ. Equations 124 (1996), 472–494.
DOI 10.1006/jdeq.1996.0020 |
MR 1370152
[25] P. Poláčik, F. Simondon: Nonconvergent bounded solutions of semilinear heat equations on arbitrary domains.
[26] L. Simon:
Asymptotics for a class of nonlinear evolution equations, with applications to geometric problems. Annals Math. 118 (1983), 525–571.
DOI 10.2307/2006981 |
MR 0727703
[28] P. Takáč: Stabilization of positive solutions of analytic gradient-like systems.
[29] R. Temam:
Infinite-dimensional dynamical systems in mechanics and physics. Springer, New York, 1988.
MR 0953967 |
Zbl 0662.35001
[30] A. Vanderbauwhede, G. Iooss:
Center manifold theory in infinite dimensions. Dynamics Reported: Expositions in Dynamical Systems, Springer, Berlin, 1992, pp. 125–163.
MR 1153030
[31] T. I. Zelenyak:
Stabilization of solutions of boundary value problems for a second order parabolic equation with one space variable. Differ. Equations 4 (1968), 17–22.
MR 0223758