Previous |  Up |  Next

Article

Title: Problems involving $p$-Laplacian type equations and measures (English)
Author: Kilpeläinen, Tero
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 243-250
Summary lang: English
.
Category: math
.
Summary: In this paper I discuss two questions on $p$-Laplacian type operators: I characterize sets that are removable for Hölder continuous solutions and then discuss the problem of existence and uniqueness of solutions to $-\div (|\nabla u|^{p-2}\nabla u)=\mu $ with zero boundary values; here $\mu $ is a Radon measure. The joining link between the problems is the use of equations involving measures. (English)
Keyword: $p$-Laplacian
Keyword: removable sets
MSC: 35B60
MSC: 35J60
MSC: 35J70
MSC: 35R05
idZBL: Zbl 1074.35536
idMR: MR1981529
DOI: 10.21136/MB.2002.134164
.
Date available: 2012-10-05T12:58:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134164
.
Reference: [1] Adams, D. R., Hedberg, L. I.: Function Spaces and Potential Theory.Springer, Berlin, 1995. MR 1411441
Reference: [2] Bénilan, P., Boccardo, L., Gallouët, T., Gariepy, R., Pierre, M., Vázquez, J. L.: An $L^1$-theory of existence and uniqueness of solutions of nonlinear elliptic equations.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 22 (1995), 241–273. MR 1354907
Reference: [3] Boccardo, L., Gallouët, T.: Nonlinear elliptic equations with right-hand side measures.Comm. Partial Diff. Eq. 17 (1992), 641–655. MR 1163440, 10.1080/03605309208820857
Reference: [4] Boccardo, L., Gallouët, T., Orsina, L.: Existence and uniqueness of entropy solutions for nonlinear elliptic equations with measure data.Ann. Inst. H. Poincaré Anal. Non Linéaire 13 (1996), 539–551. MR 1409661, 10.1016/S0294-1449(16)30113-5
Reference: [5] Carleson, L.: Selected Problems on Exceptional Sets.Van Nostrand, Princeton, N.Y., 1967. Zbl 0189.10903, MR 0225986
Reference: [6] Dal Maso, G., Murat, F., Orsina, L., Prignet, A.: Renormalized solutions of elliptic equations with general measure data.Ann. Scuola Norm. Sup. Pisa Cl. Sci. 28 (1999), 741–808. MR 1760541
Reference: [7] David, G., Mattila, P.: Removable sets for Lipschitz harmonic functions in the plane.Rev. Mat. Iberoam. 16 (2000), 137–215. MR 1768535, 10.4171/RMI/272
Reference: [8] Dolzmann, G., Hungerbühler, N., Müller, S.: Uniqueness and maximal regularity for nonlinear elliptic systems of $n$-Laplace type with measure valued right hand side.J. Reine Angew. Math. 520 (2000), 1–35. MR 1748270, 10.1515/crll.2000.022
Reference: [9] Greco, L., Iwaniec, T., Sbordone, C.: Inverting the $p$-harmonic operator.Manuscripta Math. 92 (1997), 249–258. MR 1428651, 10.1007/BF02678192
Reference: [10] Heinonen, J., Kilpeläinen, T.: $A$-superharmonic functions and supersolutions of degenerate elliptic equations.Ark. Mat. 26 (1988), 87–105. MR 0948282, 10.1007/BF02386110
Reference: [11] Heinonen, J., Kilpeläinen, T., Martio, O.: Nonlinear Potential Theory of Degenerate Elliptic Equations.Oxford University Press, Oxford, 1993. MR 1207810
Reference: [12] Kilpeläinen, T.: Hölder continuity of solutions to quasilinear elliptic equations involving measures.Potential Analysis 3 (1994), 265–272. 10.1007/BF01468246
Reference: [13] Kilpeläinen, T., Xu, X.: On the uniqueness problem for quasilinear elliptic equations involving measures.Rev. Mat. Iberoam. 12 (1996), 461–475. 10.4171/RMI/204
Reference: [14] Kilpeläinen, T., Zhong, X.: Removable sets for continuous solutions of quasilinear elliptic equations.(to appear). MR 1887015
Reference: [15] Lieberman, G.M.: Regularity of solutions to some degenerate double obstacle problems.Indiana Univ. Math. J. 40 (1991), 1009–1028. Zbl 0767.35029, MR 1129339, 10.1512/iumj.1991.40.40045
Reference: [16] Mikkonen, P.: On the Wolff potential and quasilinear elliptic equations involving measures.Ann. Acad. Sci. Fenn. Ser. A I. Math. Dissertationes 104 (1996), 1–71. Zbl 0860.35041, MR 1386213
Reference: [17] Serrin, J.: Local behavior of solutions to quasi-linear equations.Acta Math. 111 (1964), 247–302. MR 0170096, 10.1007/BF02391014
Reference: [18] Serrin, J.: Pathological solutions of elliptic differential equations.Ann. Scuola Norm. Sup. Pisa 18 (1964), 385–387. Zbl 0142.37601, MR 0170094
Reference: [19] Trudinger, N., Wang, X. J.: On the weak continuity of elliptic operators and applications to potential theory.(to appear). MR 1890997
Reference: [20] Trudinger, N. S., Wang, X. J.: Dirichlet problems for quasilinear elliptic equations with measure data.Preprint.
Reference: [21] Zhong, X.: On nonhomogeneous quasilinear elliptic equations.Ann. Acad. Sci. Fenn. Math. Diss. 117 (1998). Zbl 0911.35048, MR 1648847
.

Files

Files Size Format View
MathBohem_127-2002-2_12.pdf 334.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo