[1] J. Bricmont, A. Kupiainen, R. Lefevere: 
Ergodicity of the 2D Navier-Stokes equation with random forcing. Preprint. 
MR 1868991[3] L. Caffarelli, R. Kohn, L. Nirenberg: 
Partial regularity of suitable weak solutions of the Navier-Stokes equations. Comm. Pure Appl. Math. 35 (1982), 771–831. 
DOI 10.1002/cpa.3160350604 | 
MR 0673830[5] G. Da Prato, J. Zabczyk: 
Stochastic Equations in Infinite Dimensions. Cambridge Univ. Press, Cambridge, 1992. 
MR 1207136[9] F. Flandoli, D. Gatarek: 
Martingale and stationary solutions for stochastic Navier-Stokes equations. Probab. Theory Rel. Fields 102 (1995), 367–391. 
DOI 10.1007/BF01192467 | 
MR 1339739[10] F. Flandoli, B. Maslowski: 
Ergodicity of the 2-D Navier-Stokes equation under random perturbations. Comm. Math. Phys. 171 (1995), 119–141. 
MR 1346374[11] F. Flandoli, M. Romito: 
Statistically stationary solutions to the 3-D Navier-Stokes equation do not show singularities. Electron. J. Probab (to appear). 
MR 1825712[12] F. Flandoli, M. Romito: 
Partial regularity for stochastic Navier-Stokes equations. Trans. Amer. Math. Soc (to appear). 
MR 1885650[13] U. Frisch: 
Turbulence. Cambridge Univ. Press, Cambridge, 1998. 
Zbl 0972.76501[15] Y. Le Jan, A.-S. Sznitman: 
Stochastic cascades and 3-dimensional Navier-Stokes equations. Probab. Theory Rel. Fields 109 (1997), 343–366. 
DOI 10.1007/s004400050135 | 
MR 1481125[16] P. L. Lions, A. Majda: 
Equilibrium statistical theory for nearly parallel vortex filaments. Comm. Pure Appl. Math. 53 (2000). 
MR 1715529[17] M. Romito: Existence of martingale and stationary suitable weak solutions for a stochastic Navier-Stokes system. Preprint, Quad. Dip. U. Dini, Firenze, 2000.
[18] M. Romito: 
Some examples of singular fluid flows. Preprint, 2001. 
MR 2206484[20] M. Viot: Solution faibles d’equations aux derivées partielles stochastiques non linéaires, these de Doctorat. Paris VI, 1976.
[21] M. I. Vishik, A. V. Fursikov: 
Mathematical Problems of Statistical Hydromechanics. Kluwer, Dordrecht, 1980. 
MR 0591678[22] E. Weinan, J. C. Mattingly, Ya G. Sinai: 
Gibbsian dynamics and ergodicity for the stochastic forced Navier-Stokes equation. Comm. Math. Phys (to appear). 
MR 1868992