Previous |  Up |  Next

Article

Title: Localization effects for eigenfunctions near to the edge of a thin domain (English)
Author: Nazarov, Serguei A.
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 127
Issue: 2
Year: 2002
Pages: 283-292
Summary lang: English
.
Category: math
.
Summary: It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain $\Omega _h$ is localized either at the whole lateral surface $\Gamma _h$ of the domain, or at a point of $\Gamma _h$, while the eigenfunction decays exponentially inside $\Omega _h$. Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too. (English)
Keyword: spectral problem
Keyword: thin domain
Keyword: boundary layer
Keyword: trapped mode
Keyword: localized eigenfunction
MSC: 35B40
MSC: 35J25
MSC: 35P05
MSC: 74B05
MSC: 74E10
MSC: 74G10
idZBL: Zbl 1022.74003
idMR: MR1981533
DOI: 10.21136/MB.2002.134169
.
Date available: 2012-10-05T13:02:25Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134169
.
Reference: [1] Ciarlet P. G., Kesavan S.: Two dimensional approximations of three dimensional eigenvalues in plate theory.Comput. Methods Appl. Mech. Engrg. 26 (1980), 149–172. MR 0626720
Reference: [2] Zorin I. S., Nazarov S. A.: Edge effect in the bending of a thin three-dimensional plate.J. Appl. Math. Mech. 53 (1989), 500–507. MR 1022416, 10.1016/0021-8928(89)90059-2
Reference: [3] Dauge M., Djurdjevic I., Faou E., Rössle A.: Eigenmode asymptotics in thin elastic plates.J. Math. Pures Appl. 78 (1999), 925–964. MR 1725748, 10.1016/S0021-7824(99)00138-5
Reference: [4] Berdichevskii V. L.: High-frequency long-wave oscillations of plates.Doklady AN SSSR 236 (1977), 1319–1322. MR 0455709
Reference: [5] Berdichevskii V. L.: Variational Principles in Mechanics of Continuous Media.Nauka, Moskva, 1983. MR 0734171
Reference: [6] Nazarov S. A.: On the asymptotics of the spectrum of a thin plate problem of elasticity.Siberian Math. J. 41 (2000), 744–759. Zbl 1150.74367, MR 1785611, 10.1007/BF02679699
Reference: [7] Nazarov S. A.: Asymptotics of eigenvalues of the Dirichlet problem in a thin domain.Sov. Math. 31 (1987), 68–80. Zbl 0664.35064
Reference: [8] Kamotskii I. V., Nazarov S. A.: On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain.Probl. matem. analiz 19 (1999), 105–148. (Russian) MR 1784687
Reference: [9] Maz’ya V., Nazarov S., Plamenevskij B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. 1, 2.Birkhäuser, Basel, 2000.
Reference: [10] Evans D. V., Levitin M., Vasil’ev D.: Existence theorems for trapped modes.J. Fluid Mech. 261 (1994), 21–31. MR 1265871, 10.1017/S0022112094000236
Reference: [11] Roitberg I., Vassiliev D., Weidl T.: Edge resonance in an elastic semi-strip.Q. J. Mech. Appl. Math. 51 (1998), 1–13. MR 1610688, 10.1093/qjmam/51.1.1
Reference: [12] Nazarov S. A.: The structure of solutions of elliptic boundary value problems in slender domains.Vestn. Leningr. Univ. Math. 15 (1983), 99–104. Zbl 0527.35011
Reference: [13] Nazarov S. A.: A general scheme for averaging selfadjoint elliptic systems in multidimensional domains, including thin domains.St. Petersburg Math. J. 7 (1996), 681–748. MR 1365812
Reference: [14] Nazarov S. A.: Singularities of the gradient of the solution of the Neumann problem at the vertex of a cone.Math. Notes 42 (1987), 555–563. Zbl 0639.35018, MR 0910031, 10.1007/BF01138726
Reference: [15] Maz’ya V. G., Nazarov S. A., Plamenevskii B. A.: On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone.Math. USSR Sbornik 50 (1985), 415–437. 10.1070/SM1985v050n02ABEH002837
Reference: [16] Nazarov S. A.: Justification of asymptotic expansions of the eigenvalues of non-selfadjoint singularly perturbed elliptic boundary value problems.Math. USSR Sbornik 57 (1987), 317–349. MR 0837128, 10.1070/SM1987v057n02ABEH003071
Reference: [17] Nazarov S. A.: Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates.Nauchnaya Kniga, Novosibirsk, 2001. (Russian)
.

Files

Files Size Format View
MathBohem_127-2002-2_16.pdf 337.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo