Title:
|
Localization effects for eigenfunctions near to the edge of a thin domain (English) |
Author:
|
Nazarov, Serguei A. |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
127 |
Issue:
|
2 |
Year:
|
2002 |
Pages:
|
283-292 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
It is proved that the first eigenfunction of the mixed boundary-value problem for the Laplacian in a thin domain $\Omega _h$ is localized either at the whole lateral surface $\Gamma _h$ of the domain, or at a point of $\Gamma _h$, while the eigenfunction decays exponentially inside $\Omega _h$. Other effects, attributed to the high-frequency range of the spectrum, are discussed for eigenfunctions of the mixed boundary-value and Neumann problems, too. (English) |
Keyword:
|
spectral problem |
Keyword:
|
thin domain |
Keyword:
|
boundary layer |
Keyword:
|
trapped mode |
Keyword:
|
localized eigenfunction |
MSC:
|
35B40 |
MSC:
|
35J25 |
MSC:
|
35P05 |
MSC:
|
74B05 |
MSC:
|
74E10 |
MSC:
|
74G10 |
idZBL:
|
Zbl 1022.74003 |
idMR:
|
MR1981533 |
DOI:
|
10.21136/MB.2002.134169 |
. |
Date available:
|
2012-10-05T13:02:25Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134169 |
. |
Reference:
|
[1] Ciarlet P. G., Kesavan S.: Two dimensional approximations of three dimensional eigenvalues in plate theory.Comput. Methods Appl. Mech. Engrg. 26 (1980), 149–172. MR 0626720 |
Reference:
|
[2] Zorin I. S., Nazarov S. A.: Edge effect in the bending of a thin three-dimensional plate.J. Appl. Math. Mech. 53 (1989), 500–507. MR 1022416, 10.1016/0021-8928(89)90059-2 |
Reference:
|
[3] Dauge M., Djurdjevic I., Faou E., Rössle A.: Eigenmode asymptotics in thin elastic plates.J. Math. Pures Appl. 78 (1999), 925–964. MR 1725748, 10.1016/S0021-7824(99)00138-5 |
Reference:
|
[4] Berdichevskii V. L.: High-frequency long-wave oscillations of plates.Doklady AN SSSR 236 (1977), 1319–1322. MR 0455709 |
Reference:
|
[5] Berdichevskii V. L.: Variational Principles in Mechanics of Continuous Media.Nauka, Moskva, 1983. MR 0734171 |
Reference:
|
[6] Nazarov S. A.: On the asymptotics of the spectrum of a thin plate problem of elasticity.Siberian Math. J. 41 (2000), 744–759. Zbl 1150.74367, MR 1785611, 10.1007/BF02679699 |
Reference:
|
[7] Nazarov S. A.: Asymptotics of eigenvalues of the Dirichlet problem in a thin domain.Sov. Math. 31 (1987), 68–80. Zbl 0664.35064 |
Reference:
|
[8] Kamotskii I. V., Nazarov S. A.: On eigenfunctions localized in a neighborhood of the lateral surface of a thin domain.Probl. matem. analiz 19 (1999), 105–148. (Russian) MR 1784687 |
Reference:
|
[9] Maz’ya V., Nazarov S., Plamenevskij B.: Asymptotic Theory of Elliptic Boundary Value Problems in Singularly Perturbed Domains, Vol. 1, 2.Birkhäuser, Basel, 2000. |
Reference:
|
[10] Evans D. V., Levitin M., Vasil’ev D.: Existence theorems for trapped modes.J. Fluid Mech. 261 (1994), 21–31. MR 1265871, 10.1017/S0022112094000236 |
Reference:
|
[11] Roitberg I., Vassiliev D., Weidl T.: Edge resonance in an elastic semi-strip.Q. J. Mech. Appl. Math. 51 (1998), 1–13. MR 1610688, 10.1093/qjmam/51.1.1 |
Reference:
|
[12] Nazarov S. A.: The structure of solutions of elliptic boundary value problems in slender domains.Vestn. Leningr. Univ. Math. 15 (1983), 99–104. Zbl 0527.35011 |
Reference:
|
[13] Nazarov S. A.: A general scheme for averaging selfadjoint elliptic systems in multidimensional domains, including thin domains.St. Petersburg Math. J. 7 (1996), 681–748. MR 1365812 |
Reference:
|
[14] Nazarov S. A.: Singularities of the gradient of the solution of the Neumann problem at the vertex of a cone.Math. Notes 42 (1987), 555–563. Zbl 0639.35018, MR 0910031, 10.1007/BF01138726 |
Reference:
|
[15] Maz’ya V. G., Nazarov S. A., Plamenevskii B. A.: On the singularities of solutions of the Dirichlet problem in the exterior of a slender cone.Math. USSR Sbornik 50 (1985), 415–437. 10.1070/SM1985v050n02ABEH002837 |
Reference:
|
[16] Nazarov S. A.: Justification of asymptotic expansions of the eigenvalues of non-selfadjoint singularly perturbed elliptic boundary value problems.Math. USSR Sbornik 57 (1987), 317–349. MR 0837128, 10.1070/SM1987v057n02ABEH003071 |
Reference:
|
[17] Nazarov S. A.: Asymptotic Theory of Thin Plates and Rods. Dimension Reduction and Integral Estimates.Nauchnaya Kniga, Novosibirsk, 2001. (Russian) |
. |