Previous |  Up |  Next

Article

Title: The period of a whirling pendulum (English)
Author: Lichardová, Hana
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 126
Issue: 3
Year: 2001
Pages: 593-606
Summary lang: English
.
Category: math
.
Summary: The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point. (English)
Keyword: Hamiltonian system
Keyword: period function
Keyword: Picard-Fuchs equations
MSC: 34C05
MSC: 37G15
idZBL: Zbl 0977.37027
idMR: MR1970262
DOI: 10.21136/MB.2001.134193
.
Date available: 2009-09-24T21:54:40Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134193
.
Reference: [1] Bogdanov, R. I.: Bifurcation of limit cycle of a family of plane vector fields.Sel. Math. Sov. 1 (1981), 373–387.
Reference: [2] Brunovský, P., Chow, S.-N.: Generic properties of stationary state solutions of reaction-diffusion equation.J. Differ. Equations 53 (1984), 1–23. MR 0747403, 10.1016/0022-0396(84)90022-6
Reference: [3] Chicone, C.: The monotonicity of the period function for planar hamiltonian vector fields.J. Differ. Equations 69 (1987), 310–321. Zbl 0622.34033, MR 0903390, 10.1016/0022-0396(87)90122-7
Reference: [4] Chow, S.-N., Sanders, J. A.: On the number of critical points of the period.J. Differ. Equations 64 (1986), 51–66. MR 0849664, 10.1016/0022-0396(86)90071-9
Reference: [5] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory.Springer, New York, 1996. MR 0660633
Reference: [6] Chow, S.-N., Wang, D.: On the monotonicity of the period function of some second order equations.Časopis Pěst. Mat. 111 (1986), 14–25. MR 0833153
Reference: [7] Cushman, R., Sanders, J. A: A codimension two bifurcation with a third order Picard-Fuchs equation.J. Differ. Equations 59 (1985), 243–256. MR 0804890, 10.1016/0022-0396(85)90156-1
Reference: [8] Guckenheimer, J., Holmes, P. J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.Springer, New York, 1983. MR 0709768
Reference: [9] Jarník, V.: Integral Calculus II.Academia, Praha, 1976. (Czech)
Reference: [10] Kauderer, H.: Nichtlineare Mechanik.Springer, Berlin, 1958. Zbl 0080.17409, MR 0145709
Reference: [11] Lichardová, H.: Limit cycles in the equation of whirling pendulum with autonomous perturbation.Appl. Math. 44 (1999), 271–288. MR 1698769, 10.1023/A:1023080513150
Reference: [12] Qiu, S.-L., Vamanamurthy, M. K.: Sharp estimates for complete elliptic integrals.SIAM J. Math. Anal. 27 (1996), 823–834. MR 1382835, 10.1137/0527044
Reference: [13] Sanders, J. A., Cushman, R.: Limit cycles in the Josephson equation.SIAM J. Math. Anal. 17 (1986), 495–511. MR 0838238, 10.1137/0517039
Reference: [14] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis.Cambridge at the University Press, Cambridge, 1927. MR 1424469
Reference: [15] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos.Springer, New York, 1990. Zbl 0701.58001, MR 1056699
.

Files

Files Size Format View
MathBohem_126-2001-3_7.pdf 359.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo