Title:
|
The period of a whirling pendulum (English) |
Author:
|
Lichardová, Hana |
Language:
|
English |
Journal:
|
Mathematica Bohemica |
ISSN:
|
0862-7959 (print) |
ISSN:
|
2464-7136 (online) |
Volume:
|
126 |
Issue:
|
3 |
Year:
|
2001 |
Pages:
|
593-606 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The period function of a planar parameter-depending Hamiltonian system is examined. It is proved that, depending on the value of the parameter, it is either monotone or has exactly one critical point. (English) |
Keyword:
|
Hamiltonian system |
Keyword:
|
period function |
Keyword:
|
Picard-Fuchs equations |
MSC:
|
34C05 |
MSC:
|
37G15 |
idZBL:
|
Zbl 0977.37027 |
idMR:
|
MR1970262 |
DOI:
|
10.21136/MB.2001.134193 |
. |
Date available:
|
2009-09-24T21:54:40Z |
Last updated:
|
2020-07-29 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/134193 |
. |
Reference:
|
[1] Bogdanov, R. I.: Bifurcation of limit cycle of a family of plane vector fields.Sel. Math. Sov. 1 (1981), 373–387. |
Reference:
|
[2] Brunovský, P., Chow, S.-N.: Generic properties of stationary state solutions of reaction-diffusion equation.J. Differ. Equations 53 (1984), 1–23. MR 0747403, 10.1016/0022-0396(84)90022-6 |
Reference:
|
[3] Chicone, C.: The monotonicity of the period function for planar hamiltonian vector fields.J. Differ. Equations 69 (1987), 310–321. Zbl 0622.34033, MR 0903390, 10.1016/0022-0396(87)90122-7 |
Reference:
|
[4] Chow, S.-N., Sanders, J. A.: On the number of critical points of the period.J. Differ. Equations 64 (1986), 51–66. MR 0849664, 10.1016/0022-0396(86)90071-9 |
Reference:
|
[5] Chow, S.-N., Hale, J. K.: Methods of Bifurcation Theory.Springer, New York, 1996. MR 0660633 |
Reference:
|
[6] Chow, S.-N., Wang, D.: On the monotonicity of the period function of some second order equations.Časopis Pěst. Mat. 111 (1986), 14–25. MR 0833153 |
Reference:
|
[7] Cushman, R., Sanders, J. A: A codimension two bifurcation with a third order Picard-Fuchs equation.J. Differ. Equations 59 (1985), 243–256. MR 0804890, 10.1016/0022-0396(85)90156-1 |
Reference:
|
[8] Guckenheimer, J., Holmes, P. J.: Nonlinear Oscillations, Dynamical Systems and Bifurcations of Vector Fields.Springer, New York, 1983. MR 0709768 |
Reference:
|
[9] Jarník, V.: Integral Calculus II.Academia, Praha, 1976. (Czech) |
Reference:
|
[10] Kauderer, H.: Nichtlineare Mechanik.Springer, Berlin, 1958. Zbl 0080.17409, MR 0145709 |
Reference:
|
[11] Lichardová, H.: Limit cycles in the equation of whirling pendulum with autonomous perturbation.Appl. Math. 44 (1999), 271–288. MR 1698769, 10.1023/A:1023080513150 |
Reference:
|
[12] Qiu, S.-L., Vamanamurthy, M. K.: Sharp estimates for complete elliptic integrals.SIAM J. Math. Anal. 27 (1996), 823–834. MR 1382835, 10.1137/0527044 |
Reference:
|
[13] Sanders, J. A., Cushman, R.: Limit cycles in the Josephson equation.SIAM J. Math. Anal. 17 (1986), 495–511. MR 0838238, 10.1137/0517039 |
Reference:
|
[14] Whittaker, E. T., Watson, G. N.: A Course of Modern Analysis.Cambridge at the University Press, Cambridge, 1927. MR 1424469 |
Reference:
|
[15] Wiggins, S.: Introduction to Applied Nonlinear Dynamical Systems and Chaos.Springer, New York, 1990. Zbl 0701.58001, MR 1056699 |
. |