Previous |  Up |  Next

Article

Title: On detectable colorings of graphs (English)
Author: Escuadro, Henry
Author: Zhang, Ping
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 130
Issue: 4
Year: 2005
Pages: 427-445
Summary lang: English
.
Category: math
.
Summary: Let $G$ be a connected graph of order $n \ge 3$ and let $c\: E(G) \rightarrow \lbrace 1, 2, \ldots , k\rbrace $ be a coloring of the edges of $G$ (where adjacent edges may be colored the same). For each vertex $v$ of $G$, the color code of $v$ with respect to $c$ is the $k$-tuple $c(v) = (a_1, a_2, \cdots , a_k)$, where $a_i$ is the number of edges incident with $v$ that are colored $i$ ($1 \le i \le k$). The coloring $c$ is detectable if distinct vertices have distinct color codes. The detection number $\det (G)$ of $G$ is the minimum positive integer $k$ for which $G$ has a detectable $k$-coloring. We establish a formula for the detection number of a path in terms of its order. For each integer $n \ge 3$, let $D_u(n)$ be the maximum detection number among all unicyclic graphs of order $n$ and $d_u(n)$ the minimum detection number among all unicyclic graphs of order $n$. The numbers $D_u(n)$ and $d_u(n)$ are determined for all integers $n \ge 3$. Furthermore, it is shown that for integers $k \ge 2$ and $n \ge 3$, there exists a unicyclic graph $G$ of order $n$ having $\det (G)=k$ if and only if $d_u(n) \le k \le D_u(n)$. (English)
Keyword: detectable coloring
Keyword: detection number
Keyword: unicyclic graph
MSC: 05C15
MSC: 05C70
idZBL: Zbl 1111.05034
idMR: MR2182387
DOI: 10.21136/MB.2005.134214
.
Date available: 2009-09-24T22:23:06Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/134214
.
Reference: [1] M. Aigner, E. Triesch: Irregular assignments and two problems á la Ringel. Topics in Combinatorics and Graph Theory. (R. Bodendiek and R. Henn, eds.).Physica, Heidelberg (1990), 29–36. MR 1100017
Reference: [2] M. Aigner, E. Triesch, Z. Tuza: Irregular assignments and vertex-distinguishing edge-colorings of graphs.Combinatorics ’90, Proc. Conf., Gaeta/Italy 1990, Elsevier Science Pub., New York (1992), 1–9. MR 1195794
Reference: [3] A. C. Burris: On graphs with irregular coloring number $2$.Congr. Numerantium 100 (1994), 129–140. Zbl 0836.05029, MR 1382313
Reference: [4] A. C. Burris: The irregular coloring number of a tree.Discrete Math. 141 (1995), 279–283. Zbl 0829.05027, MR 1336691, 10.1016/0012-365X(93)E0225-S
Reference: [5] G. Chartrand, H. Escuadro, F. Okamoto, P. Zhang: Detectable colorings of graphs.(to appear). MR 2212794
Reference: [6] G. Chartrand, P. Zhang: Introduction to Graph Theory.McGraw-Hill, Boston, 2005.
.

Files

Files Size Format View
MathBohem_130-2005-4_8.pdf 443.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo