Previous |  Up |  Next

Article

Title: Linearized Oscillation of Nonlinear Difference Equations with Advanced Arguments (English)
Author: Öcalan, Özkan
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 45
Issue: 3
Year: 2009
Pages: 203-212
Summary lang: English
.
Category: math
.
Summary: This paper is concerned with the nonlinear advanced difference equation with constant coefficients \[ x_{n+1}-x_{n}+\sum _{i=1}^{m}p_{i}f_{i}(x_{n-k_{i}})=0\,,\quad n=0,1,\dots \] where $p_{i}\in (-\infty ,0)$ and $k_{i}\in \lbrace \dots ,-2,-1\rbrace $ for $i=1,2,\dots ,m$. We obtain sufficient conditions and also necessary and sufficient conditions for the oscillation of all solutions of the difference equation above by comparing with the associated linearized difference equation. Furthermore, oscillation criteria are established for the nonlinear advanced difference equation with variable coefficients \[ x_{n+1}-x_{n}+\sum _{i=1}^{m}p_{in}f_{i}(x_{n-k_{i}})=0\,,\quad n=0,1,\dots \] where $p_{in}\le 0$ and $k_{i}\in \lbrace \dots ,-2,-1\rbrace $ for $i=1,2,\dots , m$. (English)
Keyword: advanced difference equation
Keyword: delay difference equation
Keyword: nonlinear
Keyword: oscillation
MSC: 34K11
MSC: 39A10
MSC: 39A12
MSC: 39A21
idZBL: Zbl 1212.39005
idMR: MR2591676
.
Date available: 2009-09-18T11:25:30Z
Last updated: 2013-09-19
Stable URL: http://hdl.handle.net/10338.dmlcz/134234
.
Reference: [1] Agarwal, R. P.: Difference Equations and Inequalities.Marcel Dekker, New York, 2000. Zbl 0952.39001, MR 1740241
Reference: [2] Elaydi, S.: An Introduction to Difference Equation.Springer-Verlag, New York, 1999. MR 1711587
Reference: [3] Erbe, L. H., Zhang, B. G.: Oscillation of discrete analogues of delay equations.Differential Integral Equations 2 (3) (1989), 300–309. Zbl 0723.39004, MR 0983682
Reference: [4] Györi, I., Ladas, G.: Linearized oscillations for equations with piecewise constant arguments.Differential Integral Equations 2 (1989), 123–131. MR 0984181
Reference: [5] Györi, I., Ladas, G.: Oscillation theory of delay differential equations with applications.Clarendon Press, Oxford, 1991. MR 1168471
Reference: [6] Ladas, G.: Oscillations of equations with piecewise constant mixed arguments.International Conference on Differential Equations and Population Biology, Ohio University, March 21-25, New York, 1988. Zbl 0711.34083, MR 1026200
Reference: [7] Ladas, G.: Explicit conditions for the oscillation of difference equations.J. Math. Anal. Appl. 153 (1990), 276–287. Zbl 0718.39002, MR 1080131, 10.1016/0022-247X(90)90278-N
Reference: [8] Öcalan, Ö.: Oscillation of nonlinear difference equations with several coefficients.Commun. Math. Anal. 4 (1) (2008), 35–44. Zbl 1163.39004, MR 2365921
Reference: [9] Öcalan, Ö., Akin, Ö.: Oscillation properties for advanced difference equations.Novi Sad J. Math. 37 (1) (2007), 39–47. Zbl 1224.39017, MR 2402049
.

Files

Files Size Format View
ArchMathRetro_045-2009-3_5.pdf 469.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo